【導(dǎo)讀】觀察數(shù)列可知an+an+1=an+2,∴可得x=5+8=13.2.在等比數(shù)列{an}中,a4=4,則a2·a6=________.由等比數(shù)列性質(zhì)a2·a6=a24=42=16.3.等差數(shù)列{an}中,若a1=2,S5=30,則通項(xiàng)an=________.∴an=a1+(n-1)d=2+2(n-1)=2n.4.?dāng)?shù)列23,415,635,863,1099,…的一個(gè)通項(xiàng)公式為_(kāi)_______.。,每一項(xiàng)都是兩個(gè)相鄰奇數(shù)的乘積,經(jīng)過(guò)組合,則所求數(shù)。列的通項(xiàng)公式為an=2nn-n+.5.等比數(shù)列{an}中,公比q是整數(shù),a1+a4=18,a2+a3=12,解得q=2,∴S8-S4=q4S4=24×=480.a2+a8+a11=a7-5d+a7+d+a7+4d=3a7=30,∴a7=10,∴S13=13a7=130.令n+1-1=10,得n=120.11.若{an}為等差數(shù)列,Sn是其前n項(xiàng)和,且S11=22π3,則tana6的值為_(kāi)_______.。14.在數(shù)列{an}中,an=n·n+1,則此數(shù)列的最大項(xiàng)的值為_(kāi)_______.。15.已知數(shù)列{an}的通項(xiàng)公式為an=3n-23n+1.令an=710,即3n-23n+1=710,解得n=3,所以710是數(shù)列{an}中的項(xiàng),是第3項(xiàng).。求數(shù)列{|an|}的前n項(xiàng)和Sn.由an=6-n2≥0得n≤12,