【導(dǎo)讀】的垂直平分線相交于一點,這點到三角形三個頂點的距離相等.三鎮(zhèn)聯(lián)合建造一所變電站。請你作出變電站的位置(用P點。表示,并說明你的理由。∴CD垂直平分AB,
【總結(jié)】普陀區(qū)政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,請你規(guī)劃一下,該購物中心應(yīng)建于何處,才能使它到三個小區(qū)的距離相等?ABC問題?ABPMNPA=PBC直線MN⊥AB,垂足為C,且AC=CB.P1P1A=P1B……
2025-05-14 03:49
【總結(jié)】第一章三角形的證明線段的垂直平分線第2課時線段垂直平分線的應(yīng)用1課堂講解?三角形三邊的垂直平分線?線段垂直平分線的作圖及應(yīng)用2課時流程逐點導(dǎo)講練課堂小結(jié)作業(yè)提升線段的垂直平分線的性質(zhì)與判定的內(nèi)容是什么?復(fù)習(xí)回顧1知識點三角形三邊的垂直平分
2024-12-28 01:26
【總結(jié)】線段的垂直平分線(二)名山街道中學(xué)八年級數(shù)學(xué)備課組(二)學(xué)習(xí)目標(biāo)1.會進(jìn)行線段垂直平分線的尺規(guī)作圖。2.能作出軸對稱圖形的對稱軸。一、新課導(dǎo)入有時我們感覺兩個圖形是軸對稱的,如何驗證呢?不折疊圖形,你能比較準(zhǔn)確地作出軸對稱圖形的對稱軸嗎?二、自學(xué)教材教材第62—64頁止。?
2025-09-21 12:31
【總結(jié)】線段垂直平分線的性質(zhì)定理已知:線段AB,直線EF⊥AB,垂足為O,AO=BO,點P是EF上異于點O的任意一點.求證:PA=PB.ABPEFO∴PA=PB。證明:∵EF⊥AB(已知),∴∠POA=∠POB=90°(垂直的定義)。在△PAO和△PBO中,
2024-12-08 15:17
【總結(jié)】角平分線同步練習(xí)一、填空題_________.2.∠AOB的平分線上一點M,M到OA的距離為cm,則M到OB的距離為_________.,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,則∠DOC=_________.(1),點P為△ABC三條角平分線交點,PD⊥AB
2024-12-05 05:42
【總結(jié)】第一章三角形的證明3.線段的垂直平分線(一)一、學(xué)生知識狀況分析學(xué)生對于掌握定理以及定理的證明并不存在多大得困難,這是因為在七年級學(xué)習(xí)《生活中的軸對稱》中學(xué)生已經(jīng)有了一定的基礎(chǔ)。二、教學(xué)任務(wù)分析在七年級學(xué)生已經(jīng)對線段的垂直平分線有了初步的認(rèn)識,本節(jié)課將進(jìn)一步深入探索線段垂直平分線的性質(zhì)和判定。同時,滲透證明一個圖形上的每個點都具有某種
2024-11-24 17:07
【總結(jié)】線段的垂直平分線目的要求:1.理解線段的垂直平分線的定義.2.認(rèn)識點到直線的距離垂線段最短.3.學(xué)會畫線段的垂直平分線.4.能利用線段的垂直平分線的有關(guān)知識進(jìn)行應(yīng)用.重點:利用線段的垂直平分線的有關(guān)知識進(jìn)行應(yīng)用準(zhǔn)備:作圖工具、小黑板、幻燈過程:一、復(fù)習(xí).(幻燈)1.我們所學(xué)的四邊
2024-12-09 06:12
【總結(jié)】第一章三角形的證明3.線段的垂直平分線(二)一、學(xué)生知識狀況分析通過對前面相關(guān)內(nèi)容的學(xué)習(xí),學(xué)生對如何證明一個命題已經(jīng)積累一些經(jīng)驗并掌握了必要的方法。但是要證明三角形三邊垂直平分線交于一點對學(xué)生來說還是較抽象的,因此,教學(xué)時,教師對此不要操之過急,應(yīng)逐步引導(dǎo)學(xué)生理解.二、教學(xué)任務(wù)分析在上一節(jié)課,學(xué)生已經(jīng)掌握了線段垂直平分線的
2024-11-24 19:45
【總結(jié)】課題線段垂直平分線與角平分線教學(xué)目標(biāo)線段垂直平分線與角平分線概念與定理以及逆定理的理解與應(yīng)用重點、難點線段垂直平分線與角平分線定理與逆定理的理解與應(yīng)用考點及考試要求定理與逆定理的應(yīng)用教學(xué)內(nèi)容知識要點詳解1、線段垂直平分線的性質(zhì)(
2024-12-07 23:51
【總結(jié)】線段的垂直平分線教學(xué)目標(biāo)1、要求學(xué)生掌握線段垂直平分線的性質(zhì)定理及判斷定理,能夠利用這兩個定理解決一些問題。2、能夠證明線段平分線的性質(zhì)及判定定理。3、能夠利用直尺和圓規(guī)作已知線段的垂直平分線,提高熟練地使用直尺和圓規(guī)作圖的技能。重點、難點1、線段垂直平分線性質(zhì)定理及其逆定理。2、作已知線段的垂直平分線。?
2024-11-30 08:17
【總結(jié)】八年級上冊軸對稱(第2課時)課件說明?本節(jié)課內(nèi)容屬于“圖形與幾何”領(lǐng)域,是在學(xué)習(xí)了軸對稱的概念和性質(zhì)的基礎(chǔ)上,研究線段垂直平分線的性質(zhì)和判定.?學(xué)習(xí)目標(biāo):1.理解線段垂直平分線的性質(zhì)和判定.2.能運用線段垂直平分線的性質(zhì)和判定解決實際問題.3.會用尺規(guī)經(jīng)過已知
2025-06-12 18:27
【總結(jié)】指出下列圖形中的軸對稱圖形,并畫出它們的對稱軸。(1)(2)(3)(4)(5)(6)(7)怎樣做出一條線段的垂直平分線?2.過
2024-11-19 06:25
【總結(jié)】垂直平分線角平分線綜合應(yīng)用 一.解答題(共30小題)1.如圖,已知∠BAC=90°,AD⊥BC于點D,∠1=∠2,EF∥BC交AC于點F.試說明AE=CF.2.如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點,且AM平分∠BAD,DM平分∠ADC.求證:(1)AM⊥DM;(2)M為BC的中點.3.已知:如圖,D是等
2025-06-29 10:55
【總結(jié)】九年級數(shù)學(xué)(上冊)第一章證明(二)(1)性質(zhì)定理與判定定理駛向勝利的彼岸線段的垂直平分線?我們曾經(jīng)利用折紙的方法得到:?線段垂直平分線上的點到這條線段兩個端點距離相等.?你能證明這一結(jié)論嗎?回顧思考已知:如圖,AC=BC,MN⊥AB,P是MN上任意一點.求證:PA=PB.
2024-11-30 14:41
【總結(jié)】第一章三角形的證明線段的垂直平分線第1課時線段垂直平分線的性質(zhì)與判定1課堂講解?線段的垂直平分線的性質(zhì)?線段的垂直平分線的判定2課時流程逐點導(dǎo)講練課堂小結(jié)作業(yè)提升線段是軸對稱圖形嗎?它的對稱軸是什么?什么叫線段的垂直平分線?回顧舊知1知識點線段
2024-12-29 01:23