【導(dǎo)讀】中的有關(guān)元素,利用二項(xiàng)式系數(shù)及其性質(zhì)解決有關(guān)問(wèn)題.(a+b)n=C0nan+C1nan-1b+…n+1各項(xiàng)的系數(shù)Crn(r∈{0,(a+b)3=C03a3+C13a2b+C23ab2+C33b3,(a+b)4=C04a4+C14a3b+C24a2b2+C34ab3+C44b4.選定后,才能得到展開(kāi)式的一項(xiàng),所以展開(kāi)式共有2n項(xiàng),并且每一項(xiàng)都是an-rbr(r=0,1,…答它有n+1項(xiàng),各項(xiàng)的系數(shù)Cr. §研一研·問(wèn)題探究、課堂更高效問(wèn)題4二項(xiàng)式定理展開(kāi)式的結(jié)構(gòu)特征是什么?升冪排列,次數(shù)由0遞增到n;Crnan-rbr叫二項(xiàng)展開(kāi)式的通項(xiàng),用Tr+1表示,