【導(dǎo)讀】∵EF⊥AD,∴EF⊥BC.EFCA是平行四邊形.∴∠F=∠A.,∵BG=DH,∴AH=CG,又AE=CF,∴t=4.∴當(dāng)t=4時(shí),四邊形PQDC是平行四邊形.過P點(diǎn),作PE⊥BC于E,DF⊥BC于F,∴DF=AB=8,F(xiàn)C=BC-AD=18-12=6.①。當(dāng)PQ⊥BC,則BE+CE=18.即:2t+t=18,∴t=6;②當(dāng)QP⊥PC,∴PE=4,CE=3+t,=BC,那么這個(gè)四邊形是平行四邊形,根據(jù)已知不能推出OB=OD或AD∥BC或AB=DC,四邊形,∴AB=CD,∠DAB+∠ADC=180°,∵△ABE,△CDG,△ADF都是等腰直角。三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,∴∠BAE+?!螪AF+∠EAF+∠ADF+∠FDC=180°,∴∠EAF+∠CDF=45°,∵∠CDF+∠GDF. EAF,∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,∴∠GFE