freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

合情推理教學(xué)設(shè)計柴方北京市大興區(qū)興華中學(xué)-資料下載頁

2024-11-23 00:34本頁面

【導(dǎo)讀】動,在積極參與、主動探索的基礎(chǔ)上理解知識方法,使學(xué)習(xí)能力得到培養(yǎng).和提供思路的作用,有利于創(chuàng)新意識的培養(yǎng),貫穿于高中數(shù)學(xué)的整個知識體系.合情推理的生活實例和數(shù)學(xué)實例.教學(xué)問題診斷及策略:學(xué)生對于“合情推理得到命題的真實性需要通過證明”來確立的意識淡薄,透過程中,重視辯證思維的培養(yǎng).一般步驟,能夠進行一些簡單的推理.新結(jié)論,加深對數(shù)學(xué)發(fā)現(xiàn)過程的認(rèn)識,注重對學(xué)生合情推理的數(shù)學(xué)思維方法的滲透.對合情推理價值有較理性的認(rèn)識,重視辯證思維的培養(yǎng).2教學(xué)重點:理解歸納推理、類比推理、合情推理的含義、價值,合情推理的簡單應(yīng)用.考查哥德巴赫猜想的推理過程,歸納推理可怎么表述?由費馬定理被推翻,歸納推理結(jié)果一定都可靠嗎?結(jié)合所學(xué),能舉出其他類比推理的例子嗎?合情推理的定義、價值;課堂小結(jié).

  

【正文】 推理的具體運用,記為 10 分;第 2 題通過類比平面內(nèi)“垂直于同一條直線的兩條直線平行”的性質(zhì)來判斷相應(yīng)空間結(jié)論的正確 與否,讓學(xué)生再次認(rèn)識到類比推理結(jié)論不一相類比,下列結(jié)論: ① ???? ??? abba ; ② )()( ?????? ????? cbacba ; ③ |||||| ???? ??? baba ; ④ 由 ???????? ????? cbacaba 可得),0( . 以上 通過類比得到的結(jié)論正確的有 __________. 師:引導(dǎo)學(xué)生回顧向量的數(shù)量積公式,加深對于向量運算性質(zhì)的認(rèn)識與理解,體會 平面向量的數(shù)量積運算與實數(shù)的乘法運算之間的聯(lián)系與區(qū)別 . 合情推 理定義 引導(dǎo)學(xué)生總結(jié):歸納推理和類比推理都是根據(jù)已有事實,經(jīng)過觀察分析、比較、聯(lián)想,再進行歸納類比,然后提出猜想,統(tǒng)稱為合情推理 . 歸納推理和類比推理統(tǒng)稱為合情推理 (ppt 展示 ). 合情推理 價值:猜測發(fā)現(xiàn)結(jié)論;提供證明思路和方向 . 歸納總結(jié) 認(rèn)識合情推理的定義和價值 . 1 分鐘 課堂小結(jié) 引導(dǎo)學(xué)生概括本節(jié)課收獲 . 回顧總結(jié) 歸納梳理 . 2 分鐘 7 定都是可靠的,體會數(shù)學(xué)知識間的聯(lián)系與區(qū)別,同時回顧了立體幾何中線線垂直,線面垂直和面面垂直的性質(zhì),涵蓋知識點較多,記為 20分;第 3 題對于學(xué)生合情推理能力要求較高,一般至少需要分析 4 個金屬片移動次數(shù)后才能得到結(jié)論,難度較大,記為 30 分;共計 60 分, 30 分合格 . 教學(xué)設(shè)計特點與教學(xué)反思 一、教學(xué)設(shè)計特點 (一)舉出豐富生活和數(shù)學(xué)實例,所選數(shù)學(xué)實例涵蓋大量高中數(shù)學(xué)知識 . 由歸納推理實例復(fù)習(xí)了等差數(shù)列通項公式,求和公式,由類比推理實例回顧了等差數(shù)列和等比數(shù)列的性質(zhì),不等式 性質(zhì),立體幾何中基本元素(線,面,二面角,四面體),三個面兩兩垂直的四面體性質(zhì),立體幾何線線垂直、線面垂直、面面垂直的性質(zhì),平面向量數(shù)量積運算公式和性質(zhì),指數(shù)函數(shù)與對數(shù)性質(zhì)等(引導(dǎo)學(xué)生回顧所學(xué)) . (二)通過數(shù)學(xué)中類比實例,鞏固所學(xué)知識,體會知識之間的聯(lián)系與區(qū)別 . 由類比推理實例,學(xué)生建立了平面與空間元素對應(yīng)關(guān)系,建立了等式與不等式,平面向量數(shù)量積與實數(shù)乘法,平面中線線垂直與空間中線線、線面、面面垂直性質(zhì)之間的區(qū)別與聯(lián)系,有效地建立辯證思維,將滲透在這些具體數(shù)學(xué)內(nèi)容中的數(shù)學(xué)思維方法得以呈現(xiàn) . 二、教學(xué)反思 本 節(jié)內(nèi)容屬于數(shù)學(xué)思維方法的范疇, 旨在學(xué)生經(jīng)歷合情 推理的過程,加深 學(xué)生 對數(shù)學(xué)發(fā)現(xiàn)過程的認(rèn)識 .在“類比推理具體運用”環(huán)節(jié), 引導(dǎo)學(xué)生認(rèn)識到做類比推理時,把兩類對象之間對應(yīng)關(guān)系分析清楚是前提 . 例如對于問題 1(類比平面內(nèi)直角三角形的勾股定理,試給出空間四面體性質(zhì)的猜想)的解決,最終是要由勾股定理得到三個面兩兩垂直的四面體的斜面與三個直角面之間的關(guān)系,而能夠準(zhǔn)確列出直角三角形與三個面兩兩垂直的四面體元素對應(yīng)關(guān)系是前提,因而對于對平面圖形與空間圖形元素進行準(zhǔn)確類比是難點,可以在課堂上適當(dāng)多留給學(xué)生思考 和理解 時間 .
點擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1