【導(dǎo)讀】,過點(a,0),(0,b)的直線傾斜角為120?坐標(biāo)系,求出此雙曲線的方程.離心率取值范圍。例3、設(shè)雙曲線??已知原點到直線l的距離為34c,求雙曲線的離心率。的離心率等于2,則它的漸近線的方程為。1F、2F都外切,求動圓圓心M的軌跡方程。
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):使學(xué)生進一步了解雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程教學(xué)重點:根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.橢圓和雙曲線標(biāo)準(zhǔn)形式中a,b,c間的關(guān)系.教學(xué)難點:用雙曲線的標(biāo)準(zhǔn)方程處理簡單的實際問題.教學(xué)過程:一、復(fù)習(xí)提問1.雙曲線的標(biāo)準(zhǔn)方程:
2024-11-20 00:31
【總結(jié)】第8課時雙曲線的簡單性質(zhì),并能利用這些簡單幾何性質(zhì)求標(biāo)準(zhǔn)方程..,提高解方程組和計算的能力,能利用雙曲線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì),解決與雙曲線有關(guān)的實際問題,提高分析問題與解決問題的能力.如圖,某工廠有一雙曲線型自然通風(fēng)塔,其外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,已知該塔最小半徑
2024-12-04 23:43
【總結(jié)】§雙曲線的簡單幾何性質(zhì)(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.理解并掌握雙曲線的幾何性質(zhì)【重點】雙曲線的幾何性質(zhì)【難點】雙曲線的幾何性質(zhì)一、自主學(xué)習(xí)56-58頁,完成下列問題1.雙曲線位于四條直線___________
2024-11-18 16:52
【總結(jié)】●教學(xué)目標(biāo)、實虛半軸、焦點、離心率、漸近線方程.●教學(xué)重點雙曲線的幾何性質(zhì)●教學(xué)難點雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準(zhǔn)備幻燈片、三角板●教學(xué)過程:師:上一節(jié),我們學(xué)習(xí)了雙曲
2024-12-08 01:51
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.進一步熟悉橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸,研究并理解橢圓的離心率的概念.來2.掌握橢圓標(biāo)準(zhǔn)方程中a,b,c,e的幾何意義及相互關(guān)系.教學(xué)重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點、離心率.教學(xué)難點:
【總結(jié)】雙曲線的簡單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】理解并掌握雙曲線的幾何性質(zhì).【重點難點】雙曲線的幾何性質(zhì).雙曲線的幾何性質(zhì)【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P56~P58,文P49~P51找出疑惑之處)復(fù)習(xí)1:寫出滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程:①3,4ab??,焦點在x軸上;②焦點在
2024-12-05 06:47
【總結(jié)】雙曲線的幾何性質(zhì)一、基礎(chǔ)過關(guān)1.雙曲線2x2-y2=8的實軸長是()A.2B.22C.4D.422.雙曲線3x2-y2=3的漸近線方程是()A.y=±3xB.y=±13xC.y=±3xD
2024-12-03 04:57
【總結(jié)】高二數(shù)學(xué)備課組的絕對值平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差等于常數(shù)的點的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-18 12:09
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡單幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會用雙曲線的定義解決實際
2024-11-30 12:26
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)|M
2024-11-19 16:21
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)利用導(dǎo)數(shù)研究(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間2.利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性二:課前預(yù)習(xí)1.(1)作出函數(shù)342???xxy的圖像,并指出其單調(diào)區(qū)間:(2)作出函數(shù)??
2024-11-20 00:30
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)常見函數(shù)的導(dǎo)數(shù)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一、學(xué)習(xí)目標(biāo)1.熟記常見的基本初等函數(shù)的求導(dǎo)公式。2.熟練掌握求簡單函數(shù)的導(dǎo)數(shù)的兩種方法:定義法、公式法。3.理解導(dǎo)數(shù)的幾何意義,并掌握曲線的切線問題的處理的基本路徑。二、課前預(yù)習(xí)1.列出你所知的求導(dǎo)公式。
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)橢圓的標(biāo)準(zhǔn)方程(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.靈活應(yīng)用橢圓的兩個定義解題;2.能推導(dǎo)橢圓的焦半徑公式,并會用此公式解決問題?!菊n前預(yù)習(xí)】1.在橢圓)0(12222????babyax上的點M(x0,y0)的左焦半徑|MF1|=
2024-12-04 18:02
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)拋物線的幾何導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.掌握拋物線的簡單幾何性質(zhì);2.能根據(jù)拋物線方程解決簡單的應(yīng)用問題【課前預(yù)習(xí)】、雙曲線來填寫下表圖形標(biāo)準(zhǔn)方程焦點坐標(biāo)準(zhǔn)線方程
【總結(jié)】第7課時雙曲線及其標(biāo)準(zhǔn)方程.、幾何圖形.a,b,c的關(guān)系,并能利用雙曲線中a,b,c的關(guān)系處理“焦點三角形”中的相關(guān)運算.如圖所示,某農(nóng)場在M處有一堆肥料沿道路MA或MB送到稻田ABCD中去,已知|MA|=6,|MB|=8,|BC|=3,∠AMB=90°,能否在
2024-12-05 01:49