【導(dǎo)讀】1.進一步熟悉橢圓的定義與標準方程;已知B,C是兩個定點,||6BC?的周長等于16,求頂點A的軌跡方。段/PP,求線段/PP的中點M的軌跡.例2.如圖,設(shè)A,B的坐標分別為??5,0.直線AM,BM相交于點M,且它。們的斜率之積為49?,動圓M和已知圓內(nèi)切且過點(3,0)P?
【總結(jié)】充要條件【學(xué)習(xí)目標】理解充要條件的定義.【自主學(xué)習(xí)】研讀教材,回答下列問題:三、已知p:整數(shù)a是6的倍數(shù),q:整數(shù)a是2和3的倍數(shù).那么p是q的什么條件?q是p的什么條件?(1)上述問題中,p?q,故p是q的條件,q是p的條件;另一方面,q?
2024-12-05 06:41
【總結(jié)】四種命題【學(xué)習(xí)目標】了解原命題、逆命題、否命題、逆否命題這四種命題的概念.【自主學(xué)習(xí)】下列四個命題中,命題(1)與命題(2)、(3)、(4)的條件與結(jié)論之間分別有什么關(guān)系?(1)若f(x)是正弦函數(shù),則f(x)是周期函數(shù).(2)若f(x)是周期函數(shù),則f(x)是正弦函數(shù).(3)若f(x)
【總結(jié)】曲線與方程(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標】1.求曲線的方程的方法:待定系數(shù)法,直接法,代入法。2.通過曲線的方程,研究曲線的性質(zhì).【重點】求曲線的方程【難點】通過曲線的方程,研究曲線的性質(zhì)一、自主學(xué)習(xí)P36~P37,找出
2024-11-28 00:11
【總結(jié)】曲線與方程(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐。【學(xué)習(xí)目標】1.理解曲線的方程、方程的曲線;2.求曲線的方程.【重點】理解曲線的方程、方程的曲線【難點】求曲線的方程一、自主學(xué)習(xí)P34~P36,找出疑惑之處復(fù)習(xí)1:畫出函數(shù)22yx?
2024-11-18 16:53
【總結(jié)】aC'B'A'D'DABCGMC'B'A'D'DABC空間向量及其加減數(shù)乘運算【學(xué)習(xí)目標】,掌握空間向量的線性運算及其性質(zhì);、減法、數(shù)乘及它們的運算律;【自主學(xué)習(xí)】空間向量,談?wù)効臻g向量的概念、表示方法。思考:
2024-11-19 23:24
【總結(jié)】空間向量及其運算【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標】1.理解空間向量的概念,掌握其表示方法;2.會用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運算律;3.能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.【重點】能用空間向量的運算意義及運算律解決
2024-11-18 16:52
【總結(jié)】圓的簡單幾何性質(zhì)(三)【學(xué)習(xí)目標】1.掌握橢圓的第二定義;2.能利用橢圓的第二定義解決相關(guān)的問題.【典型例題】例1.點(,)Mxy與定點(4,0)F的距離和它到直線25:4lx?的距離之比是常數(shù)45,求點M的軌跡,并說明軌跡是什么圖形.思考:
2024-11-19 19:35
【總結(jié)】橢圓及其簡單幾何性質(zhì)(1)【學(xué)習(xí)目標】1.根據(jù)橢圓的方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形;2.根據(jù)幾何條件求出曲線方程,并利用曲線的方程研究它的性質(zhì),畫圖.【重點難點】橢圓的幾何性質(zhì)借助曲線方程研究橢圓性質(zhì)?!緦W(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P43~P46,文P37~P40找出疑惑之處
2024-12-05 01:56
【總結(jié)】空間向量的正交分解及其坐標表示【學(xué)習(xí)目標】⒈了解空間向量基本定理及其推論;⒉理解空間向量的基底、基向量的概念.理解空間任一向量可用空間不共面的三個已知向量唯一線性表示奎屯王新敞新疆【自主學(xué)習(xí)】空間向量基本定理與平面向量基本定理類似,區(qū)別僅在于基底中多了一個向量,從而分解結(jié)果中多了一“項”.證明的思路、步驟也基本相同.我們
2024-12-05 06:40
【總結(jié)】《橢圓》導(dǎo)學(xué)橢圓是我們生活中常見的一種曲線,如汽車油罐的橫截面、太陽系中九大行星及其衛(wèi)星運動的軌道、部分彗星的軌道等等都是橢圓形。研究橢圓的方程及其幾何性質(zhì),可以幫助我們解決一些實際問題。橢圓是解析幾何的重要內(nèi)容,是高考??嫉闹R點之一。知識要點梳理1、橢圓的定義:平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)(大于│F1F2│)的點的軌跡叫做
2024-12-05 03:04
【總結(jié)】課題雙曲線及其標準方程學(xué)習(xí)目標,幾何圖形和標準方程的推導(dǎo)過程...,承上啟下;可以結(jié)合實例,觀察分析,培養(yǎng)“應(yīng)用數(shù)學(xué)意識”,進一步鞏固數(shù)形結(jié)合思想.學(xué)習(xí)重點:掌握雙曲線的標準方程,會利用雙曲線的定義和標準方程解決簡單的問題。學(xué)習(xí)難點:幾何圖形和標準方程的推導(dǎo)過程.學(xué)習(xí)方法:以講學(xué)稿為依托
2024-11-19 15:17
【總結(jié)】空間向量運算的坐標表示【學(xué)習(xí)目標】⒈掌握空間向量坐標運算的規(guī)律;,判斷兩個向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
【總結(jié)】空間向量的數(shù)量積(二)【學(xué)習(xí)目標】利用空間向量的數(shù)量積解決立體幾何中的一些簡單問題。【自主學(xué)習(xí)與檢測】在正方體1111ABCDABCD?中,點M是AB的中點,(1)求證;1ACDB?三、求1DB與CM所成角的余弦值。完成此題后,請你比較傳統(tǒng)證法與向量證法的優(yōu)劣。
2024-12-05 01:52
【總結(jié)】空間向量的數(shù)量積(一)【學(xué)習(xí)目標】;;?!咀灾鲗W(xué)習(xí)】:::補充定義:零向量與任何向量的數(shù)量積為______________.:①___________________②__________________③___________________【自主檢測】
【總結(jié)】aBAOlP空間向量的數(shù)乘運算【學(xué)習(xí)目標】理解空間向量共線、共面的充要條件【自主學(xué)習(xí)】1.共線向量與平面向量類似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當(dāng)向量a?、b?共線(或a?//b?)時,表示a?、b