【導(dǎo)讀】當(dāng)且僅當(dāng)即是“”成立。判斷下列函數(shù)能否用均值不等式求最值?分析一:原函數(shù)式可化為:y=-3x2+x,當(dāng)時(shí)函數(shù)有最大值。例、求函數(shù)y=(x>1)的最小值。“=”號(hào)的條件是不同的,小值和此時(shí)x的取值.xxxf1)(??x>0,y>0,xy=24,求4x+6y的最小值,
【總結(jié)】......例談?dòng)没静坏仁角笞钪档乃拇蟛呗哉静坏仁剑ó?dāng)且僅當(dāng)時(shí)等號(hào)成立)是高中必修五《不等式》一章的重要內(nèi)容之一,也是高考??嫉闹匾R(shí)點(diǎn)。從本質(zhì)上看,基本不等式反映了兩個(gè)正數(shù)和與積之間的不等關(guān)系,所以在求取積的最值、和的最值當(dāng)中,基本不等式將會(huì)煥發(fā)出強(qiáng)大的生命力,它將會(huì)是解決最值問(wèn)題的強(qiáng)有力工具。本文將結(jié)合幾個(gè)實(shí)例談?wù)勥\(yùn)用基
2025-06-27 07:18
【總結(jié)】基本不等式的應(yīng)用課時(shí)目標(biāo);(小)值問(wèn)題.1.設(shè)x,y為正實(shí)數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時(shí),積xy有最____值,且這個(gè)值為_(kāi)_______.(2)若xy=p(積p為定值),則當(dāng)______時(shí),和x+y有最____值,且這個(gè)值為_(kāi)_____.2.利用
2024-12-05 10:12
【總結(jié)】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
2024-12-08 20:20
【總結(jié)】3.基本不等式的證明學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入如下圖所示,以線段a+b的長(zhǎng)為直徑作圓,在直徑AB上取點(diǎn)C,使AC=a,CB=b,過(guò)點(diǎn)C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-11-17 19:03
【總結(jié)】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【總結(jié)】基本不等式的應(yīng)用教學(xué)目標(biāo):一、知識(shí)與技能1.能利用基本不等式解決最值問(wèn)題;2.會(huì)利用基本不等式解決與三角有關(guān)問(wèn)題.二、過(guò)程與方法1.通過(guò)實(shí)例體會(huì)基本不等式在最值問(wèn)題中的應(yīng)用;2.通過(guò)實(shí)例體會(huì)總結(jié)基本不等式在應(yīng)用中需要注意的問(wèn)題.三、情感、態(tài)度與價(jià)值觀通過(guò)親歷解題的過(guò)程,
【總結(jié)】:2baab??引入新課提問(wèn)1:我們把“風(fēng)車”造型抽象成下圖.在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形的兩條直角邊的長(zhǎng)為a、b,那么正方形的邊長(zhǎng)為多少?面積為多少呢?ADCBGEFH引入新課提問(wèn)1:我們把“風(fēng)車”造型抽象成下圖.在
2024-11-19 18:20
【總結(jié)】基本不等式以培養(yǎng)學(xué)生探究精神為出發(fā)點(diǎn),著眼于知識(shí)的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗(yàn),設(shè)置問(wèn)題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機(jī)會(huì)。特進(jìn)行如下教學(xué)設(shè)計(jì):(一)設(shè)問(wèn)激疑,創(chuàng)設(shè)情景展示北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過(guò)三個(gè)問(wèn)題
【總結(jié)】溫故知新1、比較兩實(shí)數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-17 17:33
【總結(jié)】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識(shí)基本不等式:(1)基本不等式成立的條件:;(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí)取等號(hào).(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-05 19:27
【總結(jié)】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時(shí),主要內(nèi)容是探索基本不等式的生成和證明過(guò)程及其簡(jiǎn)單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點(diǎn),它與線性規(guī)劃呈并列結(jié)構(gòu),可用來(lái)求某些函數(shù)的值域和最值,也可解決實(shí)際生活中的最優(yōu)化配置問(wèn)題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03
【總結(jié)】基本不等式的證明課時(shí)目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時(shí)取“=”號(hào)).2.若a,b都為_(kāi)___數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時(shí),等號(hào)成立),稱上述不等式為_(kāi)_____不等式,其中________稱為a,b的算術(shù)平均數(shù),
2024-12-05 10:13
【總結(jié)】§趙爽弦圖中國(guó)古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對(duì)勾股定理作理論的證明。最早對(duì)勾股定理進(jìn)行證明的,是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,以弦為邊長(zhǎng)得到正方形A
2024-11-17 12:13
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說(shuō)明兩個(gè)正數(shù)的幾何平均數(shù)不大于它們的
【總結(jié)】基本不等式與最大(?。┲祷静坏仁饺绻际钦龜?shù),那么,當(dāng)且僅當(dāng)都是正數(shù)時(shí),等號(hào)成立.abba??2ba,CAOBD問(wèn)題1.把一段16㎝長(zhǎng)的鐵絲彎成形狀不同的矩形,什么時(shí)候面積最大?2.在面積為16c㎡的所有不同形狀的矩形中
2024-11-12 16:44