【導(dǎo)讀】②x=-1是f的極小值點(diǎn);③f在[-1,2]上是增函數(shù),在[2,4]上是減函數(shù);②∵f′(-1)=0且在x=0兩側(cè)的導(dǎo)數(shù)值為左負(fù)右正,內(nèi)單調(diào)遞減”的________________條件.解析當(dāng)0<x<1時(shí),xf′<0,零,并考查這些區(qū)間與原函數(shù)的單調(diào)區(qū)間是否一致.不等式f′>0的解集為_(kāi)_______.,g=f+f′.解由題設(shè)易知f=lnx,g=lnx+1x,∴g的定義域?yàn)椋鄃′=x-1x2.令g′=0,得x=1.1x=2lnx-x+1x,利用函數(shù)單調(diào)性可以判定函數(shù)值的大小關(guān)系.跟蹤訓(xùn)練2設(shè)a為實(shí)數(shù),函數(shù)f=ex-2x+2a,x∈R.解由f=ex-2x+2a,x∈R知f′=ex-2,x∈R.故f的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是(ln2,