【導讀】的取值情況如何?ξ取各個值的概率分別是什么?問題2:連續(xù)拋擲兩個骰子,得到的點數(shù)之和為ξ,中取值的分布狀況,稱為隨機變量的概率分布。如何給出定義呢?你能得出分布列有什么性質?求此射手“射擊一次命中環(huán)數(shù)≥7”的概率。已知某運動員罰球命中的概率為。數(shù)的一半,現(xiàn)從該盒中隨機取出一球,若取出紅球得1分,同理可得P(ξ=2)=3/10;P(ξ=3)=1/10.的所有取值為:3、4、5、6.?表示其中一個球號碼等于“3”,
【總結】2.1.1離散型隨機變量教學目標:知識目標:機變量的意義;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:
2024-11-20 03:14
【總結】2.3.1離散型隨機變量的期望教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量的均值或期望。情感、態(tài)度與價值觀
2024-12-08 22:39
【總結】§離散型隨機變量的分布列導學案(理)一、教學目標1、理解離散型隨機變量的分布列的意義,會求某些簡單的離散型隨機變量的分布列;2、掌握離散型隨機變量的分布列的兩個基本性質,并會用它來解決一些簡單的問題.3.理解二點分布及超幾何分布的意義.重點:離散型隨機變量的分布列的意義及基本性質.難點:分布列的求法和性質的應用.
2024-11-20 03:13
【總結】2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。情感、態(tài)度與價值觀:承
2024-11-20 03:12
【總結】【與名師對話】2021-2021學年高中數(shù)學離散型隨機變量的分布列課時作業(yè)新人教A版選修2-31.設袋中有80個紅球,20個白球,若從袋中任取10個球,則其中恰有6個紅球的概率為()480C610C10100B.C680C410C10100480C620C10100
2024-11-28 00:07
【總結】離散型隨機變量的期望1、什么叫n次獨立重復試驗?一.復習其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構成,且每次試驗互相獨立完成,每次試驗的結果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
2024-11-17 05:48
【總結】§.(1、2)離散型隨機變量及其分布列學習目標,會求某些簡單的離散型隨機變量的分布列。,并會用它來解決一些簡單的問題。學習過程【任務一】問題分析問題1:拋擲一枚質地均勻的骰子,觀察得到的點數(shù),試驗可能出現(xiàn)的結果如何?問題2:拋擲一枚質地均勻的硬幣,記“正面向上”為1,“反面向上”為0,試驗可能出現(xiàn)
2024-12-03 11:29
【總結】新課標人教版課件系列《高中數(shù)學》選修2-3《離散型隨機變量及其分布列-隨機變量》教學目標?、離散型隨機變量、連續(xù)型隨機變量的意義,并能說明隨機變量取的值所表示的隨機試驗的結果?2.通過本課的學習,能舉出一些隨機變量的例子,并能識別是離散型隨機變量,還是連續(xù)型隨機變量?教學重點:隨機變量、離散
2024-11-24 16:59
【總結】離散型隨機變量的方差【教學目標】①理解取有限值的離散型隨機變量的方差、標準差的概念和意義,會求離散型隨機變量的方差、標準差;②會用離散型隨機變量的方差、標準差解決一些實際問題.【教學重點】應用離散型隨機變量的方差、標準差解決實際問題【教學難點】對離散型隨機變量的方差、標準差的理解一、課前預習:設一個離散型隨機
2024-11-19 03:13
【總結】量的分布列(1)一個試驗如果滿足下述條件:(1)試驗可以在相同的條件下重復進行;(2)試驗的所有結果是明確的且不止一個;(3)每次試驗總是出現(xiàn)這些結果中的一個,但在試驗之前卻不能肯定這次試驗會出現(xiàn)哪一個結果。這樣的試驗就叫做一個隨機試驗,也簡稱試驗。隨機試驗一、復習引入:例(1)某人射擊一
2024-10-12 17:09
【總結】離散型隨機變量的均值1、什么叫n次獨立重復試驗?一.復習其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構成,且每次試驗互相獨立完成,每次試驗的結果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
2024-11-18 08:45
【總結】離散型隨機變量的方差一般地,若離散型隨機變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機變量的均值的定義
2024-11-18 15:23
【總結】§2.1.1離散型隨機變量教學目標:知識目標:;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義奎屯王新敞新疆教
2024-11-19 19:35
【總結】一、教學目標:1、知識目標:⑴理解隨機變量的意義;⑵學會區(qū)分離散型與非離散型隨機變量,并能舉出離散性隨機變量的例子;⑶理解隨機變量所表示試驗結果的含義,并恰當?shù)囟x隨機變量。2、能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力。3、情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.二、教學重點:隨機變量、離