freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

四川省廣安市20xx-20xx學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理試題word版含解析-資料下載頁

2024-11-15 22:41本頁面

【導(dǎo)讀】每個(gè)小題給出的四個(gè)選項(xiàng)中只有一。根據(jù)排列數(shù)公式,所以,對(duì)照表中數(shù)據(jù)得出有的幾率說明這兩個(gè)變量之間的關(guān)系是不可信的,所以觀察可知,增加的項(xiàng)為,故選擇D。令,則原式為,所以,故選擇C。數(shù)”,又因?yàn)楸绢}為古典概型概率問題,所以根據(jù)條件概率可知,可知可求得導(dǎo)函數(shù),因?yàn)楫?dāng)時(shí),,三個(gè)相乘得到,因此項(xiàng)的系數(shù)為:。一對(duì)應(yīng)關(guān)系,觀察出規(guī)律,最后根據(jù)規(guī)律即可得出一般性結(jié)論。第22~23題為選考題,考生根據(jù)要求作答). 求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

  

【正文】 【解析】 試題分析:( 1)若 與 的圖像在交點(diǎn)( 2, )處的切線互相垂直,則可知 ,于是可以求出 的值;( 2) ,則 ,又 ,于是可以求出 的值,然后根據(jù)函數(shù) 的單調(diào)性及函數(shù)零點(diǎn)存在性定理來確定函數(shù) 零點(diǎn)所在的區(qū)間,從而確定 n的取值。 試題解析:( 1) , 由題知 ,即 解得 ( 2) = , 由題知 ,即 解得 =6, =- 1 ... ∴ =6 -( - ), = ∵ > 0,由 > 0,解得 0< < 2;由 < 0,解得 > 2 ∴ 在( 0,2)上單調(diào)遞增,在( 2, +∞ )單調(diào)遞減, 故 至多有兩個(gè)零點(diǎn),其中 ∈ ( 0,2), ∈ ( 2, +∞ ) = 又 > =0, =6( - 1)> 0, =6( - 2)< 0 ∴ ∈( 3,4),故 =3 點(diǎn)睛:函數(shù)零點(diǎn)問題是考查頻率較高的問題,尤其是零點(diǎn)存在性定理:如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么函數(shù) 在區(qū)間內(nèi)有零點(diǎn),即存在 ,使得 ,這個(gè) 也就是方程 的根。 22. (選修 44:坐標(biāo)系與參數(shù)方程選做) 已知在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 ( 為參數(shù)),在極坐標(biāo)系(以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸 )中,曲線 的方程為,曲線 交于 兩點(diǎn). ( 1)若 且定點(diǎn) ,求 + 的值; ( 2)若 成等比數(shù)列,求 的值. 【答案】 ( 1) ( 2) 【解析】 試題分析:( 1)曲線 的極坐標(biāo)方程 可化為,即 ,當(dāng) 時(shí),方程為 ,將直線 的參數(shù)方程帶入拋物線 ,得到關(guān)于的一元二次方程 ,根據(jù)直線參數(shù)方程標(biāo)準(zhǔn)形式的幾何意義, ,于是可以求出 的值;( 2)將曲線 的參數(shù)方程帶入拋物線 ,得到方程 ,根據(jù)直線參數(shù)方程標(biāo)準(zhǔn)形式的幾何意義, , , ,于是 , 于是有 ,整理得 ,于是可以求出 的值。 試題解析: ( 1) ∵曲線 的方 程為 , ∴曲線 的直角坐標(biāo)方程為 ,又已知 , ∴曲線 的直角坐標(biāo)方程為 ,將曲線 的參數(shù)方程 ( 為參數(shù))與 聯(lián)立得 ,由于 , 所以設(shè)方程兩根為, ∴ , , ∴ . ( 2)將曲線 的參數(shù)方程 ( 為參數(shù))與 聯(lián)立得 ,由于 ,所以設(shè)方程兩根為 , ∴ , ,且 , 又 , , 成等比數(shù)列, ∴ , ∴ , ∴ , 即 , ∴ , ∴ , 解得 ,又 , ∴ , ∴當(dāng) , , 成等比數(shù)列時(shí), 的值為 23. (選修 45:不等式選講選做) 已知函數(shù) . ( 1)求不等式 的解集; ( 2)若不等式 對(duì)任意 恒成立,求 實(shí)數(shù) 的取值范圍 . 【答案】 ( 1) ( 2) 【解析】 試題分析:( 1)先將函數(shù) 轉(zhuǎn)化為分段函數(shù) ,不等式等價(jià)于 ,根據(jù)分段函數(shù)可以轉(zhuǎn)化為 ,于是得到不等式的解集;( 2)根據(jù) 的取值分類討論,當(dāng) 時(shí),不等式為 ,對(duì)任意恒成立,當(dāng) 時(shí),不等式轉(zhuǎn)化為 對(duì)任意 恒成立,而,所以 ,即得出 的取值范圍。 ... ( 1) ∵ , ∴由 得 , ∴ ,解得 , ∴不等式 的解集為 ( 2)① 當(dāng) 時(shí),不等式 恒成立,此時(shí) . ② 當(dāng) 時(shí),問題等價(jià)于不等式 對(duì)任意 恒成立, ∵.當(dāng) ,或 時(shí), , ∴ ,解得 , 綜上,知實(shí) 數(shù) 的取值范圍是 .
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1