【導讀】、幾何平均值的概念。當且僅當時,式中等號成立?我們把叫做a,b的算術平均數(shù),把。從形的角度來看,基本不等式具有特定的?;貞浺幌履闼鶎W的知識中,有哪些地方出?,F(xiàn)過“和”與“積”的結(jié)構?該結(jié)論成立的條件是什么?是否僅僅當a=b時等號才成立?公式兩邊具有何種運算結(jié)構?數(shù)的角度:平方和不小于積的2倍。的最大值及相應的x值。時,函數(shù)有最_______值是_______6?并說明什么時候取到等
【總結(jié)】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價格購進電腦芯片。甲、乙兩公司共購芯片兩次,每次的芯片價格不同,甲公司每次購10000片芯片,乙公司每次購10000元芯片,兩次購芯片,哪家公司平均成本低?請給出證明過程。分析:設第一、第二次購芯片的價格分別為每片a元和b元,列出甲、乙兩公司的平均價格,然后利用不等式知識論證。解:
2024-11-09 01:27
【總結(jié)】2abab??(0,0)ab??學習目標?會用基本不等式證明一些簡單不等式;?會用基本不等式解決簡單的最值問題.(重點)如果a、b?R,那么a2+b2?2ab(當且僅當a=b時取“=”號)如果a,b是正數(shù),那么(當且僅當a=b
2024-11-12 17:13
【總結(jié)】第一篇:均值不等式應用 均值不等式應用 一.均值不等式 22a+b1.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£a=b時取“=”)22 22.(1)若a,b?R*,則a+...
2024-11-05 18:14
【總結(jié)】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當且僅當xy=...
2024-11-05 18:15
【總結(jié)】第一篇:均值不等式教案 3.2均值不等式教案(3) (第三課時) 教學目標: 了解均值不等式在證明不等式中的簡單應用 教學重點: 了解均值不等式在證明不等式中的簡單應用 教學過程 例 ...
2024-11-05 18:41
【總結(jié)】新課標人教版課件系列《高中數(shù)學》必修5《基本不等式-均值不等式》教學目標?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應用。?教學重點:?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定
2025-08-05 04:41
【總結(jié)】Mathwang幾個經(jīng)典不等式的關系一幾個經(jīng)典不等式(1)均值不等式設是實數(shù),等號成立.(2)柯西不等式設是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設,為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關證明(1)用排
2025-04-17 08:24
【總結(jié)】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分...
2024-10-28 10:42
【總結(jié)】第一篇:均值不等式教案 §均值不等式 【教學目標】 【教學重點】 掌握均值不等式 【教學難點】 利用均值不等式證明不等式或求函數(shù)的最值,【教學過程】 一、均值不等式: 均值定理...
【總結(jié)】第三章不等式數(shù)學(人教B版·必修5)典題導析課前自主預習重點難點展示思路方法技巧建模應用引路探索延拓創(chuàng)新課堂鞏固訓練名師辨誤做答第三章不等式數(shù)學
2025-08-05 04:34
【總結(jié)】1解不等式一.選擇題:1.使不等式xx1?成立的x取值范圍是()A.)1(?,B.)1(???,C.)1()01(??,,?D.)1()1(????,,?2.不等式11??xax的解集為}21|{??xxx或,則a值(
2024-11-12 18:06
【總結(jié)】不等式不等式不等式不等式平均值不等式平均值不等式
2025-04-29 00:24
【總結(jié)】第一篇:57均值不等式與不等式的實際應用 學案五十七:均值不等式與不等式的實際應用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(?。┲?..
2024-11-03 14:01
【總結(jié)】立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版1第六章不等式第講立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版2考點搜索●利用基本不等式證明不等式●運用重要不等式求最值
2025-08-11 14:47
【總結(jié)】
2024-11-12 16:46