【導讀】單位向量:長度為1個單位長度的向量.注意:1)零向量是一個特殊的向量;AF=c,用a、b、c表示向量AD、BE、BF、FC.其實質就是向量的伸長或縮短!它的長度|λa|=|λ||a|;例2已知a=(1,2),b=,當k為何值時,ka+b與a-3b平行?平行時它們是同向還是反向?平行充要條件的坐標表示,得到關于k方程,解出k,最后它們的判斷方向.共線且方向相同?求λ和μ,使c=λa+μb.
【總結】第二章平面向量向量的物理背景與概念向量的幾何表示問題提出t57301p2???????,位移與距離是同一個概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數(shù)學上,為了正確理解、區(qū)分這些量,我們引進向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
2024-11-10 00:48
【總結】第二節(jié)平面向量基本定理及坐標表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
2024-11-12 01:35
【總結】高一數(shù)學競賽輔導六(向量應用)求解平面向量中的數(shù)量積問題,主要有這樣幾種方法:1.利用向量線性運算,施行向量的轉化;2.建立坐標系轉化為代數(shù)問題;3.利用向量數(shù)量積的幾何意義解決數(shù)量積的求解問題。4.公式法:(極化法)例1(1)已知平面向量,滿足|+|=3,|-|=1,則=_____.(2)已知平面向量,,
2025-04-04 05:00
【總結】1.設、、是單位向量,且·=0,則的最小值為(D)A. B. C.D.解析是單位向量.2.已知向量,則(C) A.B.C.D.解析,故選C.3.平面向量a與b的夾角為,,則(
2025-04-17 13:01
【總結】新課標人教版課件系列《高中數(shù)學》必修4《平面向量的物理背景及其含義》教學目標?了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量.?通過對向量的學習,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質區(qū)別
2024-11-11 21:09
【總結】平面向量一、選擇題:本大題共10小題,每小題5分,共50分。1、下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是()A.B.C.D.2、若ABCD是正方形,E是CD的中點,且,,則=()A.B. ?。茫模?、若向量與不共線,,且
2025-06-24 15:17
【總結】必修4第二章平面向量教學質量檢測姓名:班級:學號:得分:(5分×12=60分):1.以下說法錯誤的是( )A.零向量與任一非零向量平行2.下列四式不能化簡為的是( ?。〢. B.C. D.3.已知=(3,4),=(
2025-06-24 19:26
【總結】第五章向量平面向量的數(shù)量積及運算律(2)平面向量的數(shù)量積及運算律(2)一.復習:1、平面向量的數(shù)量積的定義記作=已知兩個非零向量和,它們的夾角為?,我們把數(shù)量abba?即有
2025-08-01 17:41
【總結】.高一數(shù)學第八章平面向量第一講向量的概念與線性運算一.【要點精講】1.向量的概念①向量:既有大小又有方向的量。幾何表示法,;坐標表示法。向量的模(長度),記作||.即向量的大小,記作||。向量不能比較大小,但向量的??梢员容^大小.②零向量:長度為0的向量,記為,其方向是任意的,規(guī)定平行于任何向量。(與0的區(qū)別)③單位向量||=1。④平行向量(共線向量)
2025-04-04 04:58
【總結】平面向量的基本定理及坐標表示一、選擇題1、若向量=(1,1),=(1,-1),=(-1,2),則等于()A、+B、C、 D、+2、已知,A(2,3),B(-4,5),則與共線的單位向量是 ()A、 B、C、 D、
2025-06-24 19:14
【總結】1思考1思考2引入思考3課外思考P競賽輔導─向量法2利用向量處理幾何問題,最重要的是要先在幾何圖形中尋找具有向量因素的特征,如共線、平行、垂直、線段的倍分等,然后引進向量通過向量的運算,來達到解(證)幾何題的目的.下面就這一方法在解題中的應用做一些思考.競賽輔
2024-11-09 09:21
【總結】向量的加法與減法如圖,已知向量a、b.在平面內(nèi)任取一點A,作,,則向量叫做a與b的和,記作a+b,即1.向量的加法:求兩個向量和的運算,叫做向量的加法。三角形法則“首尾相接,首尾連”aAB?bBC?ACACBCABba????aba
2024-11-10 08:36
【總結】2.1空間點、直線、平面之間的位置關系平面問題提出t57301p2???????A′B′C′D′ABCD空間中,點、直線、平面之間有各種不同的位置關系?我們將從理論進行分析和探究.知識探究(一):平面的概念、畫法及表示思考1:生活中
2024-11-11 09:01
【總結】專題五:平面向量專題備考指導及考情分析:平面向量是高中數(shù)學的重要內(nèi)容,它是銜接代數(shù)與幾何的橋梁和紐帶,向量、向量法在其他章節(jié)內(nèi)容中的穿插、滲透和融合,是高考數(shù)學試題中的一道靚麗的風景,綜觀2022年全國各地高考試卷,對平面向量的考查主要包括以下三個層次:(1)考查平面向量的性質和運算法則,以及基本運算技能;(2)考查向
2025-08-16 02:00
【總結】向量的加法以前由于上海和臺北沒有直航,某人春節(jié)從臺北回上海探親,乘飛機要先從臺北到香港,再從香港到上海,這兩次位移和是什么?現(xiàn)在從上海到臺北有直航了嗎?直航的位移與前兩次的位移和一樣嗎?上海臺北香港上海臺北香港CAB1.向量加法的定義:(1)
2024-11-11 06:00