【總結(jié)】,已知等邊△ABC,P在AC延長線上一點(diǎn),以PA為邊作等邊△APE,EC延長線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.2、點(diǎn)C為線段AB上一點(diǎn),△ACM,△CBN都是等邊三角形,線段AN,MC交于點(diǎn)E,BM,CN交于點(diǎn)F。求證:(1)AN=MB.(2)將△ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)一定角度,如圖②所示,其他條
2025-03-27 00:37
【總結(jié)】全等三角形綜合復(fù)習(xí)切記:“有三個(gè)角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個(gè)三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點(diǎn),點(diǎn)在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-23 18:30
【總結(jié)】......全等三角形綜合復(fù)習(xí)切記:“有三個(gè)角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個(gè)三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-23 03:58
【總結(jié)】中考專題復(fù)習(xí)全等三角形知識點(diǎn)總結(jié)一、全等圖形、全等三角形::能夠完全的兩個(gè)圖形就是全等圖形。:全等多邊形的、分別相等。:三角形是特殊的多邊形,因此,全等三角形的對應(yīng)邊、對應(yīng)角分別相等。同樣,如果兩個(gè)三角形的邊、角分別對應(yīng)相等,那么這兩個(gè)三角形全等。說明:全等三角形對應(yīng)邊上的高,中線相等,對應(yīng)角的平分線相等
2025-07-23 17:44
【總結(jié)】全等三角形證明經(jīng)典題(含答案)1.已知:AB=4,AC=2,D是BC中點(diǎn),111749AD是整數(shù),求ADADBC解:延長AD到E,使AD=DE∵D是BC中點(diǎn)∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4
2025-06-19 23:06
【總結(jié)】全等三角形提高練習(xí)1.如圖所示,△ABC≌△ADE,BC的延長線過點(diǎn)E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF的度數(shù)。2.如圖,△AOB中,∠B=30°,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)52°,得到△A′OB′,邊A′B′與邊OB交于點(diǎn)C(A′不在OB上),則∠A′CO的度數(shù)為多少?
2025-06-19 20:55
【總結(jié)】全等三角形單元測試:(每題3分,共30分)ADBEFC圖2,AD⊥BC,D為BC的中點(diǎn),則△ABD≌_________. ABCD圖1111
2025-06-24 20:56
【總結(jié)】....全等三角形證明經(jīng)典題(含答案)1.已知:AB=4,AC=2,D是BC中點(diǎn),111749AD是整數(shù),求ADADBC解:延長AD到E,使AD=DE∵D是BC中點(diǎn)∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCB
2025-06-19 23:08
【總結(jié)】全等三角形提高練習(xí)1.如圖所示,△ABC≌△ADE,BC的延長線過點(diǎn)E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF的度數(shù)。2.如圖,△AOB中,∠B=30°,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)52°,得到△A′OB′,邊A′B′與邊OB交于點(diǎn)C(A′不在OB上),則∠A′CO的度數(shù)為多少
2025-06-26 21:06
【總結(jié)】....歡迎您的光臨,!希望您提出您寶貴的意見,你的意見是我進(jìn)步的動力。贈語;1、如果我們做與不做都會有人笑,如果做不好與做得好還會有人笑,那么我們索性就做得更好,來給人笑吧!2、現(xiàn)在你不玩命的學(xué),以后命玩你。3、我不知道年少輕狂,我只知道勝者為王。4、不要做金錢、權(quán)利的奴隸;應(yīng)學(xué)會做
2025-03-24 07:41
【總結(jié)】15/15
【總結(jié)】精品資源第19課三角形與全等三角形知識點(diǎn):三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關(guān)系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點(diǎn),邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-16 12:49
【總結(jié)】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對邊相交,這個(gè)角的頂
2025-07-24 01:22
【總結(jié)】三角形全等的判定第1課時(shí)全等三角形與全等三角形的判定條件1.的兩個(gè)三角形叫做全等三角形,全等三角形的對應(yīng)邊____,對應(yīng)角____.2.兩個(gè)三角形只有一組或兩組對應(yīng)相等的元素,這兩個(gè)三角形全等;兩個(gè)三角形有三組對應(yīng)相等的元素,這兩個(gè)三角形
2025-10-31 04:27
【總結(jié)】1.如圖,在△ABC中,D是BC上一點(diǎn),E是AD上一點(diǎn),且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點(diǎn)D在BC邊上移動,連接AD,將△ADC沿直線AD翻折,點(diǎn)C的對應(yīng)點(diǎn)為C1.(1)當(dāng)AC1⊥BC時(shí),CD的長是多少?(2)設(shè)C
2025-03-25 06:32