【總結(jié)】二次函數(shù)的應(yīng)用中考復(fù)習(xí)專題浠水縣麻橋中學(xué)王穎靈練習(xí)2、已知:用長為12cm的鐵絲圍成一個(gè)矩形,一邊長為xcm.,面積為ycm2,問何時(shí)矩形的面積最大?解:∵周長為12cm,一邊長為xcm,∴另一邊為(6-x)cm解:由韋達(dá)定理得:x1+x2=2k,x1?x2=2k-1
2024-11-07 02:16
【總結(jié)】二次函數(shù)1.最大利潤與二次函數(shù)陽泉市義井中學(xué)高鐵牛?頂點(diǎn)式,對稱軸和頂點(diǎn)坐標(biāo)公式:?利潤=售價(jià)-進(jìn)價(jià).駛向勝利的彼岸回味無窮二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)??????????abacab44,22.44222abaca
2024-11-06 21:42
【總結(jié)】二次函數(shù)復(fù)習(xí)課挑戰(zhàn)自我自我構(gòu)建基礎(chǔ)演練思維激活聚焦中考靈活運(yùn)用基礎(chǔ)知識(shí)之自我構(gòu)建請思考函數(shù)y=x2-4x+3,并寫出相關(guān)結(jié)論。同學(xué)們比一比,賽一賽,看誰寫得多.1.請寫出一個(gè)二次函數(shù)解析式,使其圖像的對稱軸為x=1,并且開口向下。
2025-08-01 12:31
【總結(jié)】二次函數(shù)的實(shí)際應(yīng)用陡門鄉(xiāng)第二初級中學(xué)林惠注意:當(dāng)二次函數(shù)表示某個(gè)實(shí)際問題時(shí),還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實(shí)數(shù)(3)開口方向:當(dāng)a>0時(shí),拋物線開口向上;當(dāng)a<0時(shí),拋物線開口向下。
2024-11-21 23:05
【總結(jié)】xOyxyO二次函數(shù)知識(shí)導(dǎo)航:?1、二次函數(shù)的定義?2、二次函數(shù)的圖像及性質(zhì)?3、求解析式的三種方法?4、二次函數(shù)的圖象與系數(shù)之間的關(guān)系?5、拋物線的平移?6、二次函數(shù)與一元二次方程的關(guān)系?7、二次函數(shù)的綜合應(yīng)用y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c
2025-06-15 12:13
【總結(jié)】二次函數(shù)復(fù)習(xí)注意:當(dāng)二次函數(shù)表示某個(gè)實(shí)際問題時(shí),還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實(shí)數(shù):(1)二次函數(shù)的一般形式:函數(shù)y=ax2+bx+c(a≠0)注意:它的特殊形式:當(dāng)b=0,c
【總結(jié)】·新課標(biāo)第17講│二次函數(shù)的應(yīng)用第17講二次函數(shù)的應(yīng)用·新課標(biāo)第17講│考點(diǎn)隨堂練│考點(diǎn)隨堂練│考點(diǎn)1二次函數(shù)與一次函數(shù)、反比例函數(shù)的綜合·新課標(biāo)第17講│考點(diǎn)隨堂練1.[2011·無錫]如圖17-1,拋物線y=
2025-01-12 22:28
【總結(jié)】二次函數(shù)的圖像與性質(zhì)(一)第二十四講,求二次函數(shù)的解析式:⑴已知拋物線的頂點(diǎn)坐標(biāo)為(-1,-2),且通過點(diǎn)(1,10).⑵已知拋物線經(jīng)過(2,0),(0,-2),(-2,3)三點(diǎn).⑶已知拋物線與x軸交點(diǎn)的橫坐標(biāo)為-2和1,且通過點(diǎn)(2,8).Oy-11x2、已知二次函數(shù)y=
2024-11-19 08:00
【總結(jié)】第18講二次函數(shù)的應(yīng)用│考點(diǎn)隨堂練│考點(diǎn)1二次函數(shù)與一次函數(shù)、反比例函數(shù)的綜合1.如圖17-1,拋物線y=x2+1與雙曲線y=kx的交點(diǎn)A的橫坐標(biāo)是1,則關(guān)于x的不等式kx+x2+11B.x
2025-08-04 18:36
【總結(jié)】二次函數(shù)的解析式1、了解二次函數(shù)的幾種表達(dá)式:2、能根據(jù)一點(diǎn)、兩點(diǎn)、三點(diǎn)的坐標(biāo)求出二次函數(shù)的表達(dá)式;3、根據(jù)二次函數(shù)的表達(dá)式解決有關(guān)問題.4、提高學(xué)生的閱讀理解能力,收集處理信息能力,運(yùn)用知識(shí)能力,解決實(shí)際問題能力,探索、發(fā)現(xiàn)問題能力.一、教學(xué)目標(biāo):1、舉例說明二次函數(shù)有幾種表達(dá)式:2、請舉例說明如何根據(jù)一點(diǎn)、兩點(diǎn)、三點(diǎn)
2024-11-19 12:03
【總結(jié)】二次函數(shù)1.最大利潤與二次函數(shù)?頂點(diǎn)式,對稱軸和頂點(diǎn)坐標(biāo)公式:?利潤=售價(jià)-進(jìn)價(jià).駛向勝利的彼岸回味無窮二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)想一想P352?總利潤=每件利潤×銷售數(shù)量.何時(shí)橙子總產(chǎn)量最大?100棵橙子樹,每一棵樹平均結(jié)600個(gè)橙子.現(xiàn)準(zhǔn)備
2024-11-11 04:55
【總結(jié)】【二次函數(shù)的定義】(考點(diǎn):二次函數(shù)的二次項(xiàng)系數(shù)不為0,且二次函數(shù)的表達(dá)式必須為整式)1、下列函數(shù)中,是二次函數(shù)的是.①y=x2-4x+1;②y=2x2; ③y=2x2+4x; ④y=-3x;⑤y=-2x-1; ⑥y=mx2+nx+p; ⑦y=錯(cuò)誤!未定義書簽。; ⑧y=-5x
2025-04-16 12:36
【總結(jié)】二次函數(shù)y=ax2+bx+c的圖象和性質(zhì)(2)1.對于任何實(shí)數(shù)h,拋物線y=(x-h)2與拋物線y=x2的相同2.將拋物線y=-2x2向左平移一個(gè)單位,再向右平移3個(gè)單位得拋物線解析式為.y=3(x-8)2最小值為.方向,大小y=-
【總結(jié)】第一篇:二次函數(shù)復(fù)習(xí) 二次函數(shù)復(fù)習(xí)(1)教學(xué)反思 在二次函數(shù)復(fù)習(xí)這節(jié)課中,圍繞(1)二次函數(shù)的定義(2)二次函數(shù)的圖像、性質(zhì)與a、b、c的關(guān)系(3)二次函數(shù)解析式的求法(4)數(shù)形結(jié)合這四個(gè)知識(shí)點(diǎn)進(jìn)...
2024-10-17 21:19
【總結(jié)】二次根式()學(xué)習(xí)目標(biāo):1、了解二次根式的概念和有關(guān)性質(zhì)、最簡二次根式的概念及同類二次根式的概念;2、根據(jù)二次根式的意義能確定字母的取值范圍,在有理數(shù)范圍內(nèi)分解因式;3、根據(jù)二次根式的性質(zhì)熟練地化簡二次根式,掌握二次根式的加、減法法則,并能熟練地運(yùn)算.1、下列各式中哪些一定是二次根式?).0(,1,1),0(3
2024-11-19 04:34