【總結(jié)】課件設計:北師大南山附校榮紅莉教材分析教法學法教學過程教學反饋重點難點教學目標《平面向量坐標運算》教學說明教材的地位和作用本節(jié)內(nèi)容在教材中有著承上啟下的作用。向量用坐標表示后,對立體幾何教材的改革也有著深遠的意義,可使空間結(jié)構(gòu)系統(tǒng)
2024-11-10 07:56
【總結(jié)】2020屆高考數(shù)學復習強化雙基系列課件12《平面向量-平面向量的應用》1.知識精講:掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題.cos?abab?一、知識回顧12122222112
2024-11-09 08:48
【總結(jié)】平面向量中三點共線定理的應用知識梳理(一)、對平面內(nèi)任意的兩個向量的充要條件是:存在唯一的實數(shù),使由該定理可以得到平面內(nèi)三點共線定理:(二)、三點共線定理:在平面中A、B、P三點共線的充要條件是:對于該平面內(nèi)任意一點的O,存在唯一的一對實數(shù)x,y使得:且。特別地有:當點P在線段AB上時, 當點P在線段AB之外時,典例剖析例1、已知是的邊上的任一點,
2025-06-20 00:20
【總結(jié)】北師大南山附中榮紅莉Email:平面向量的坐標運算xy0A(x,y)a《平面向量坐標運算》教學說明教材分析教法學法教學過程教學評價重點難點教學目標教材的地位和作用承上啟下;推進了立體幾何的改革;使空間結(jié)構(gòu)系
2024-11-09 00:34
【總結(jié)】向量及向量的基本運算高三備課組1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向是任意的,與任意向量平行。注意與
2024-11-10 07:31
【總結(jié)】?1、下列描述CH2=CH—CH=CH—CH3分子結(jié)構(gòu)的敘述中,正確的是()?A、5個碳原子有可能都在同一平面上?B、5個碳原子有可能都在同一條直線上?C、5個碳原子不可能都在同一平面上?D、不能判斷是否可能都在同一平面上或同一條直線上?2、分子式為C6H12的某烯烴的所有的碳原子
2024-11-09 08:56
【總結(jié)】共線向量與共面向量廣東河源中學王利強與平面一樣,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量.a(chǎn)平行于b記作a∥b.對空間任意兩個向量a、b(b≠0),a∥b的充要條件是存在實數(shù)λ使a=λb.a(chǎn)?b?a?共線向量定理推論
2025-08-16 02:01
2025-08-16 00:32
2025-08-05 18:56
【總結(jié)】§相等向量與共線向量【學習目標、細解考綱】1理解相等向量與共線向量的概念2由向量相等的定義,理解平行向量與共線向量是等價的?!局R梳理、雙基再現(xiàn)】1相等向量是_________________________向量a與b相等,記作_______________。任意兩個相等的非零向量,都可用一條有向線段來表示,并且
2024-12-02 08:37
【總結(jié)】平面向量的基本定理及坐標表示平面向量共線的坐標表示課標點擊平面向量共線的坐標表示預習導學典例精析課堂導練課堂小結(jié)1.理解向量共線定理.2.掌握兩個向量平行(共線)的坐標表示和會應用其求解有關(guān)兩向量
2025-07-25 14:48
【總結(jié)】《平面向量共線的坐標表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標運算延伸的作用,它是在學生對平面向量的基本定理有了充分的認識和正確的應用后產(chǎn)生的,平面向量共線的坐標表示則為用“數(shù)”的運算處理“形”的問題搭建了橋梁,同時也為定比分點坐標公式和中點坐標公式的推導奠定了基礎;向量共線的坐標表示,對立體幾何教材也有著深遠的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2025-08-07 15:05
【總結(jié)】2020屆高考數(shù)學復習強化雙基系列課件26《平面向量的坐標表示與運算》?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標表示要點·疑點·考點
2024-11-10 00:27
【總結(jié)】實用標準文案平面向量中“三點共線定理”妙用對平面內(nèi)任意的兩個向量的充要條件是:存在唯一的實數(shù),使由該定理可以得到平面內(nèi)三點共線定理:三點共線定理:在平面中A、B、P三點共線的充要條件是:對于該平面內(nèi)任意一點的O,存在唯一的一對實數(shù)x,y使得:且。特別地有:當點P在線段AB上時, 當點P在線段AB之外時, 筆者在經(jīng)過多年高三復習教學中發(fā)現(xiàn),運用
2025-08-05 06:02
【總結(jié)】海鹽高級中學高新軍復習引入:?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運算
2025-08-05 06:24