【總結(jié)】§8.高階導(dǎo)數(shù)與高階微分YunnanUniversity1一、高階導(dǎo)數(shù)及其運(yùn)算法則,其速度物體運(yùn)動(dòng)規(guī)律)(tss?.lim)(0tstsvt???????一階導(dǎo)數(shù)).())(()(lim)(0tststvtvtat?????????????時(shí)間內(nèi)在t?于是,212gts?自由落
2025-05-14 22:24
【總結(jié)】作業(yè)習(xí)題1、求下列函數(shù)的導(dǎo)數(shù)。(1);(2);(3);(4);(5);(6)。2、求下列隱函數(shù)的導(dǎo)數(shù)。(1);(2)已知求。3、求參數(shù)方程所確定函數(shù)的一階導(dǎo)數(shù)與二階導(dǎo)數(shù)。4、求下列函數(shù)的高階導(dǎo)數(shù)。(1)求;(2)求。5、求下列函數(shù)的微分。(1);(2)。6、求雙曲線,在點(diǎn)處的切線方程與法線方程。7、用定
2025-01-14 12:50
【總結(jié)】導(dǎo)數(shù)的概念導(dǎo)數(shù)的運(yùn)算微分結(jié)束第2章導(dǎo)數(shù)與微分前頁(yè)結(jié)束后頁(yè)對(duì)于勻速直線運(yùn)動(dòng)來(lái)說(shuō),其速度公式為:?路程速度時(shí)間一物體作變速直線運(yùn)動(dòng),物體的位置與時(shí)間00()()ssttst?????的函數(shù)關(guān)系為,稱(chēng)為位置
2025-09-26 00:39
【總結(jié)】機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束1/28四、小結(jié)思考題一、偏導(dǎo)數(shù)三、高階偏導(dǎo)數(shù)二、全微分機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束2/28一、偏導(dǎo)數(shù)【定義】設(shè)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?
2025-05-06 03:15
【總結(jié)】(一)二、一元函數(shù)微分學(xué)(一)導(dǎo)數(shù)與微分(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,會(huì)用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)。(2)會(huì)求曲線上一點(diǎn)處的切線方程與法線方程。(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則以及復(fù)合函數(shù)的求導(dǎo)方法。(5)理解高階導(dǎo)數(shù)的
2025-07-24 03:21
【總結(jié)】題型、函數(shù)、導(dǎo)數(shù)、積分綜合性的使用微分中值定理寫(xiě)出證明題,利用洛比達(dá)法則,進(jìn)行計(jì)算,計(jì)算導(dǎo)數(shù),求函數(shù)的單調(diào)性以及極值、最值,進(jìn)行二階求導(dǎo),求函數(shù)的凹凸區(qū)間以及拐點(diǎn),利用極限的性質(zhì),求漸近線的方程內(nèi)容一.中值定理二.洛比達(dá)法則一些類(lèi)型(、、、、、、等)三.函數(shù)的單調(diào)性與極值四.函數(shù)的凹凸性與拐點(diǎn)五.函數(shù)的漸近線水平漸近
2025-03-25 01:54
【總結(jié)】MATLAB在微積分中的應(yīng)用導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分內(nèi)容概要?導(dǎo)數(shù)的實(shí)際意義?顯函數(shù)的導(dǎo)數(shù)和高階導(dǎo)數(shù)?隱函數(shù)的導(dǎo)數(shù)?參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)的定義hxfhxfxfh)()(lim)('0????導(dǎo)數(shù)的實(shí)際意義-幾何意義函數(shù)切線的斜率導(dǎo)數(shù)的實(shí)際意義
2025-07-25 08:55
【總結(jié)】第二章導(dǎo)數(shù)與微分主講人:張少?gòu)?qiáng)TianjinNormalUniversity計(jì)算機(jī)與信息工程學(xué)院一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率第四節(jié)隱函數(shù)&參數(shù)方程所確定函數(shù)的導(dǎo)數(shù)相關(guān)變化率一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示
2025-08-01 13:04
【總結(jié)】返回后頁(yè)前頁(yè)§4高階導(dǎo)數(shù)當(dāng)我們研究導(dǎo)函數(shù)的變化率時(shí)就產(chǎn)生了高階導(dǎo)數(shù).如物體運(yùn)動(dòng)規(guī)律為,()sst?它的運(yùn)動(dòng)速度是,而速度在時(shí)刻()vst??()()().atvtst?????t的變化率就是物體在時(shí)刻的加速度t返回返回
2025-08-02 10:51
【總結(jié)】高職數(shù)學(xué)wele第三章導(dǎo)數(shù)與微分§3-2函數(shù)的求導(dǎo)法則§3-3微分§3-1導(dǎo)數(shù)的概念本章小結(jié)與提高在專(zhuān)業(yè)課許多的問(wèn)題中,需要研究各種變量的變化速度。如物體的運(yùn)動(dòng)速度,電流變化,密度變化,熱量變化,化學(xué)反應(yīng)速度及生物繁殖率等,這些
2025-09-26 00:44
【總結(jié)】第八章多元函數(shù)微分學(xué)教案編寫(xiě):張理電子制作:張理第八章多元函數(shù)微分學(xué)本章學(xué)習(xí)要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點(diǎn)函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質(zhì)。會(huì)求二元函數(shù)的極限。知道極限的“點(diǎn)函數(shù)”表示法。3.理解二元和三元函數(shù)的偏導(dǎo)數(shù)、全導(dǎo)數(shù)、全微分等概念。了解
2025-08-16 01:37
【總結(jié)】第三單元微分中值定理與導(dǎo)數(shù)應(yīng)用一、填空題1、__________。2、函數(shù)在區(qū)間______________單調(diào)增。3、函數(shù)的極大值是____________。4、曲線在區(qū)間__________是凸的。5、函數(shù)在處的階泰勒多項(xiàng)式是_________。6、曲線的拐點(diǎn)坐標(biāo)是_________。7、若在含的(其中)內(nèi)恒有二階負(fù)的導(dǎo)數(shù),且_______,則是在上的
2025-08-17 11:37
【總結(jié)】《高等數(shù)學(xué)》Ⅱ—Ⅰ課程教案第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用本章內(nèi)容是上一章的延續(xù),主要是利用導(dǎo)數(shù)與微分這一方法來(lái)分析和研究函數(shù)的性質(zhì)及其圖形和各種形態(tài),這一切的理論基礎(chǔ)即為在微分學(xué)中占有重要地位的幾個(gè)微分中值定理。在分析、論證過(guò)程中,中值定理有著廣泛的應(yīng)用。一、教學(xué)目標(biāo)與基本要求(一)知識(shí)、拉格朗日中值定理、柯西中值定理的條件和結(jié)論;;,sin(x),cos(
2025-06-24 23:00
【總結(jié)】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運(yùn)算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-12 21:33