【總結】WORD資料可編輯直線圓錐曲線與向量的綜合問題高考考什么知識要點:1.直線與圓錐曲線的公共點的情況(1)沒有公共點方程組無解(2)一個公共點(3)兩個公共點2.連結圓錐曲線上兩個點的線段稱為圓錐曲線的弦,要能熟練地利用方程的根
2025-03-25 06:30
【總結】直線與圓錐曲線的位置關系安吉高級中學張國旗【教學要求】.,能夠應用直線與圓錐曲線的位置關系解決一些實際問題.【典型例題】例1.已知直線l過拋物線)0(22??ppxy)的焦點F,并且與拋物線交于),(),,(2211yxByxA兩點,證明:(1)焦點弦公式AB=pxx??21;(2)
2024-11-27 21:39
【總結】與圓錐曲線有關取值范圍與最值問題一、利用圓錐曲線定義求最值二、單變量最值問題——化為函數(shù)最值
2025-07-26 09:49
【總結】麻城市第一中學圓錐曲線中的定點問題麻城一中王輝麻城市第一中學1.解析幾何中,定點問題是高考命題的一個熱點,也是一個難點,因為定點必然是在變化中所表現(xiàn)出來的不變量,所以可運用函數(shù)的思想方法,結合等式的恒成立求解,也就是說要與題中的可變量無關。2.求定點常用方法有兩種:①特殊到一般法,根據(jù)動點、
2025-08-05 04:47
【總結】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構建不等式xy設分別是橢圓的左、右焦點,若在直線上存在點P,使線段的中垂線過點,求橢圓離心率的取值范圍.解法一:設P,F(xiàn)1P的中點Q的坐標為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因為y2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-03-25 00:03
【總結】直線與圓錐曲線測試題一選擇題(本大題共12小題,每小題3分,共36分.在每小題給出的四個選項中,只有一項是符合題目要求的)1直線l1:y=x+1,l2:y=x+2與橢圓C:3x2+6y2=8的位置關系是Al1,l2與C均相交 Bl1與C相切,l2與C相交Cl1與C相交,l2與C相切 Dl1,l2與均相離2(
2025-03-25 06:29
【總結】直線與圓1.(1)求經(jīng)過點A(5,2),B(3,2),圓心在直線2x-y-3=0上的圓的方程;(2)設圓上的點A(2,3)關于直線x+2y=0的對稱點仍在這個圓上,且與直線x-y+1=0相交的弦長為,求圓方程.,焦點在x軸上,離心率為,且橢圓經(jīng)過圓C:的圓心C。(1)求橢圓的方程;(2)設直線過橢圓的焦點且與圓C相切,求直線的方程。、,點為坐標平面內(nèi)的動點,
2025-08-17 03:21
【總結】直線與圓錐曲線的位置關系一.基本方法:1.直線與圓錐曲線的位置關系可以通過對直線方程與圓錐曲線方程組成的二元二次方程組的解的情況的討論來研究。即方程消元后得到一個一元二次方程,利用判別式⊿來討論(注⊿≠0時,未必只有二個交點)。2.直線與圓錐曲線的位置關系,還可以利用數(shù)形結合、以形助數(shù)的方法來解并決。3.如果直線的斜率為
2024-11-10 08:33
【總結】直線與圓錐曲線練習一=mx+1與橢圓x2+4y2=1只有一個公共點,那么m2的值是()A.1/2B.3/4C.2/3D.4/5,則的取值范圍是()A.B.C.D.=0被拋物線y2=6x所截得的弦長為()A.5
2025-08-05 09:50
【總結】定點、定直線、定值專題1、已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為.(Ⅰ)求橢圓的標準方程;(Ⅱ)若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標.【標準答案】(I)由題意設橢圓的標準方程為,(II)設,由得,,.以AB為直徑的圓過橢圓的右頂點,,(最好是用
2025-03-26 05:41
【總結】解析幾何專題六??????22222222222222221(0)20*0*0001xylykxmCababbakxakmxamabbaklClClC??????????????直線
2024-11-12 18:51
【總結】直線與圓錐曲線的位置關系例1已知雙曲線x2-y2=4,直線L過點P(1,1),斜率為k,問:k為何值時,直線L與雙曲線只有一個交點;有兩個交點;沒有交點?解:∵直線L的方程為:y-1=k(x-1)代入雙曲線方程得:(1-k2)x2+2k(k-1)x-(k2-2k+5)=0當:1-k2=0時,k=±1k
2024-11-16 21:27
【總結】知識點1、直線和圓錐曲線位置關系的判斷2、與弦長有關的問題一、直線與圓錐曲線位置關系的判斷除直線和圓的位置關系外,一般都用代數(shù)法,通過方程組解的個數(shù)判斷直線和曲線的位置關系。(1)△>0方程有兩個不等的實數(shù)根直線與曲線有兩個不同的交點直線和曲線相交(2)△=0方程有兩個相等的實數(shù)根直線與曲線有
2025-05-01 22:17
【總結】知識結構?????圓錐曲線橢圓雙曲線拋物線標準方程幾何性質標準方程幾何性質標準方程幾何性質第二定義第二定義統(tǒng)一定義綜合應用橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)
2025-08-05 04:45
【總結】把直線方程代入圓的方程得到一元二次方程計算判別式?0,相交?=0,相切?0,相離[1]判斷直線與橢圓位置關系的根本方法是解直線方程和橢圓方程組成的方程組[2]把直線方程代入橢圓方程后,若一元二次方程好解,則應解方程;若一元二次方程不好解,
2024-11-09 12:55