freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

塑料儀表蓋注塑成型工藝及模具設(shè)計(jì)-資料下載頁

2024-11-10 02:34本頁面

【導(dǎo)讀】后,受柱塞或螺桿的推動(dòng),熔融塑料通過料筒前端的噴嘴快速注入閉合塑模中,經(jīng)冷卻定型或加熱定型后,開啟模具取出制品。閱讀設(shè)計(jì)任務(wù)書,明確設(shè)計(jì)任務(wù),準(zhǔn)備設(shè)計(jì)資料。塑件在模具中的成型位置,分。出機(jī)構(gòu)的設(shè)計(jì),排出系統(tǒng)和溫度調(diào)節(jié)系統(tǒng)的設(shè)計(jì)和模架選擇。間的裝配關(guān)系,用CAD繪制裝配圖及各零件圖。整理和編寫課程設(shè)計(jì)說明書。料的體積產(chǎn)量已經(jīng)大大超過了鋼鐵,成為當(dāng)前社會(huì)使用的一大類材料。品,在國(guó)明經(jīng)濟(jì)各領(lǐng)域充分地發(fā)揮作用。優(yōu)越性、擴(kuò)大注塑制品應(yīng)用的首要問題。改革開放以來,隨著國(guó)民經(jīng)濟(jì)的高速發(fā)展,市場(chǎng)對(duì)模具的需求量不斷增長(zhǎng)。中外合資和外商獨(dú)資的模具企業(yè)現(xiàn)已有幾千家。汽車公司模具廠、一汽模具中心等模具廠家已能生產(chǎn)部分轎車覆蓋件模具。期等方面做出了貢獻(xiàn)。業(yè)發(fā)達(dá)國(guó)家相比仍有較大的差距?!皟r(jià)格低”的要求服務(wù)。達(dá)到這一要求急需發(fā)展如下幾項(xiàng):

  

【正文】 鏡研究,結(jié)果發(fā)現(xiàn),氧化鋯顆粒 呈 球形和 MgHC顆粒 呈 鱗片型,如圖 3所示。 粉末尺寸 的大小分布如圖 4所示。氧化鋯 的 平均粒徑為 ,并不包含任何團(tuán)聚。 MgHC載弱團(tuán)聚( 1017米)和其平均粒徑約為 。根據(jù)研究結(jié)果,這些粉末是適合注塑成型的過程 的 。 塑料儀表蓋注塑成型工藝及模具設(shè)計(jì) 第 35 頁 共 55 頁 a) b) 圖 的 掃描電鏡掃描, a)氧化鋯和 b) MgHC 綠色密度結(jié)果 : 塑料儀表蓋注塑成型工藝及模具設(shè)計(jì) 第 36 頁 共 55 頁 用此方法準(zhǔn)備原料很容易 在 120?C左右 使用冷模具 注射成功 。 在 成型溫度 下原料的粘度是足夠的。設(shè)置時(shí)間 20秒,足 可讓 該管無失真和堅(jiān)持從模具 中 退出。從 不同批次所得的綠色密度列在表 2。 所有批次 中的 值非常相似 由于 混合原料。理論和測(cè)量樣品的密度的最大差異小于 3%。 這表明,粘結(jié)劑和陶瓷顆?;旧鲜?均勻混合 。 微分重量分布 (%) 粒子直徑( 微 米) a) 微分重量分布 ( % ) 粒子直徑(毫米) b) 圖 , a)氧化鋯和 b) MgHC 塑料儀表蓋注塑成型工藝及模具設(shè)計(jì) 第 37 頁 共 55 頁 表 的 密度測(cè)量結(jié)果為所提出的混合 40 v/o的陶瓷粉末 批次 號(hào) 樣品號(hào) 綠色密度 理論密度 密度差 ( g/cm3) ( g/cm3) (%) 減重結(jié)果 : 部分脫脂結(jié)果 列 在表 3 。所有分批的值表明,一個(gè)統(tǒng)一的粘結(jié)劑分布的規(guī)模大小 被 檢查 出 , 即,二克 的 管。該脫脂速率為減輕 的 體重除以為三批在有限的范圍 內(nèi) 初始粘結(jié)劑的內(nèi)容 的 樣本改變 量 。最大的差異,在所有分批 的 脫脂率小于1%和進(jìn)行分批來自不同樣本 的 價(jià)值 互相 接近。這是混合均勻結(jié)果。 微觀結(jié)構(gòu)評(píng)價(jià) : 粘結(jié)劑已被完全拆掉和 在 1750?C燒結(jié),保溫 5小時(shí) 的一個(gè) 掃描電鏡的標(biāo)本顯示在圖 5 。此鏡揭示了 在晶粒結(jié)構(gòu) 和晶粒尺寸 方面 陶瓷粒子的統(tǒng)一包裝條款。 塑料儀表蓋注塑成型工藝及模具設(shè)計(jì) 第 38 頁 共 55 頁 表 的 結(jié)果 使 為氧化鋯管的樣本所作的原料含有 40 v/o的陶瓷粉末 批次 號(hào) 樣品號(hào) 脫脂速率 (% ) 平均 脫脂速率 (% ) 差異(% ) 圖 ,由于同質(zhì)包裝的陶瓷顆粒 , 顯示統(tǒng)一的晶粒尺寸 。 結(jié)論 : 塑料儀表蓋注塑成型工藝及模具設(shè)計(jì) 第 39 頁 共 55 頁 本研究 的對(duì)象是 產(chǎn)品小管的形狀。這項(xiàng)研究的結(jié)果表明,該建議的制備原料的方法 可用于大規(guī)模的工業(yè)應(yīng)用。在原料制備過程中利用真空從最后的混合物消除空氣。這使得成型步驟很容易。使用這種方法 ,原料 無須 任何隔離的粘結(jié)劑,可準(zhǔn)備和 注 入。 鳴謝 : 作者非常感謝研究理事會(huì) 穆尼爾 比入瑟列 基金會(huì)提供財(cái)政支持。 References Dow, ., Sacks, ., Shenoy, ., “Dispersion of Ceramic Particles in Polymer Melts, Ceramic Transactions, Vol. 1A, Ceramic Powder Science, The Ame. Cer. Soc., Ohio, 380388, 1988. Evans, , \Injection Moulding, Materials Science and Technology: A Comprehensive Treatment, Vol. 17A, Processing of Ceramics, VCH, Weinheim, 267311, 1996. German, ., “Powder Injection Moulding,MPIF, New Jersey, 1990. German, ., Hens, ., Lin, ., “Key Issues in Powder Injection Moulding”,Cer. Bull., 70, 8, 12941302, 1991. Mutsuddy, ., Ford, ., “Ceramic Injection Mgoulding, Chapman amp。 Hall, London, 1995. Waugh, A., “Process for Forming Sintered Leachable Objects for Various Shapes, Patent , 1970. 塑料儀表蓋注塑成型工藝及模具設(shè)計(jì) 第 40 頁 共 55 頁 英文原文: Turk J Engin Environ Sci 25 (2020) , 315319. c TUBITAK Preparation of Homogeneous Feedstocks for Injection Moulding of ZirconiaBased Ceramics Huseyin S. SOYKAN, Yilmaz KARAKAS Department of Metallurgical and Materials Engineering, Sakarya University, Esentepe, 54187, Adapazar TURKEY Received Abstract: In this study, a new method for preparing homogeneous feedstocks for injection moulding of ZrO2 ceramics was developed and explained in detail. Mixture homogeneity on a large scale was assessed by measuring green density after moulding and weight loss after partial debinding for several tube samples from different batches. The grain structure of a sintered specimen was examined using SEM for the packing of ceramic particles. Key Words: Feedstock, Mixing, Injection Moulding, Zirconia 塑料儀表蓋注塑成型工藝及模具設(shè)計(jì) 第 41 頁 共 55 頁 Introduction: Ceramic injection moulding (CIM) has emerged in the last 20 years as a manufacturing process for forming plex and near shape ponents. In this process, a high concentration of ceramic powder is mixed with a binder to form a moderateviscosity feedstock. This feedstock is moulded in equipment that is very similar to that used for polymer injection moulding. After moulding, the binder is extracted from the ponent. The debinded piece is then heated to the sintering temperature to attain a high final product density. The process is applicable to a wide range of established and emerging materials, and can be used to obtain petitive final properties(Evans, 1996). The CIM processing steps have been well documented (Mutsuddy, 1995). However, there is little information about the details of feedstock preparation. After selecting a suitable powder and a binder system, the first processing step in CIM is to mix them to prepare an appropriate feedstock for moulding and subsequent processing (German, 1991). A homogeneous feedstock having a high powder content is required to achieve a low shrinkage during binder removal and sintering. The feedstock should have the particles separated with a very thin layer of binder. To achieve this, powder agglomerates have to be dispersed in the binder (Dow, 1988). Two methods of mixing the binder with the ceramic powder have 塑料儀表蓋注塑成型工藝及模具設(shè)計(jì) 第 42 頁 共 55 頁 been developed (Waugh, 1970 and German, 1990). In one, the ceramic powder plus the anic binder are kneaded in a hot mixer to a homogeneous consistency at an elevated temperature. In the second mixing method, the anic binder is dissolved in a suitable solvent and the resulting solution is mixed with the ceramic powder in a ball mill or a bladetype mixer. The solvent then is removed by heating the mix for a su_cient time above the boiling point of the solvent. The aim of the present study was to prepare homogeneous feedstocks for _negrained ZrO2 ceramics using the first method. Experimental Materials: In the present study, the ZrO2MgO (8 mole %) system was selected. The powders used for the present study were high grade ZrO2, and natural hydromagnesite (MgHC) as the MgO source. The particle shapes of the powders were determined using a Jeol JSM 6400 scanning electron microscope (SEM). A Coulter LS 130 Particle Size Analyser was used to measure the particle size distributions of the powders. The binder system consisted of a mixture of paraffin wax as primary binder and oleic acid as surfactant. This binder system was selected du
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1