【總結(jié)】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2025-08-11 16:42
【總結(jié)】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2025-08-21 12:42
【總結(jié)】1.計(jì)算下列定積分:⑴;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分換元法令,則,當(dāng)從單調(diào)變化到時(shí),從單調(diào)變化到,于是有。⑵;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分換元法令,則,當(dāng)從單調(diào)變化到1時(shí),從1單調(diào)變化到16,于是有。⑶;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分
2025-08-05 05:32
【總結(jié)】第五章定積分及其應(yīng)用§定積分及應(yīng)用內(nèi)容網(wǎng)絡(luò)圖定積分及其應(yīng)用定積分定義可積的條件性質(zhì)計(jì)算方法中值定理13條基本性質(zhì)性質(zhì)變上限積分求導(dǎo)定理牛頓一萊布尼茲公式基本方法變量代換湊微分分部積分換元法應(yīng)用微元法幾何應(yīng)用平面圖形面積旋轉(zhuǎn)體及一般立體的體積平面曲線弧長(zhǎng)物理應(yīng)用質(zhì)量重心坐標(biāo)
2025-08-17 06:09
【總結(jié)】課堂講練互動(dòng)活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)1.7定積分的簡(jiǎn)單應(yīng)用1.定積分在幾何中的應(yīng)用課堂講練互動(dòng)活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)【課標(biāo)要求】1.會(huì)通過定積分求由兩條或多條曲線圍成的圖形的面積.2.在解決問題的過程中,通過數(shù)形結(jié)合的思想方法,加深對(duì)定積分的幾何意義的理解.【核心掃描】由多條曲線圍成的分
2025-05-15 01:35
【總結(jié)】§定積分在物理上的應(yīng)用由物理學(xué)知道,如果物體在作直線運(yùn)動(dòng)的過程中有一個(gè)不變的力F作用在這物體上,且這力的方向與物體的運(yùn)動(dòng)方向一致,那么,在物體移動(dòng)了距離s時(shí),力F對(duì)物體所作的功為sFW??.如果物體在運(yùn)動(dòng)的過程中所受的力是變化的,就不能直接使用此公式,而采用“元素法”思想.一、變力沿
2025-01-13 21:34
【總結(jié)】1第七節(jié)定積分的物理應(yīng)用一、變力沿直線作功二、液體對(duì)薄板的側(cè)壓力第五章三、引力(自學(xué))2設(shè)物體在連續(xù)變力F(x)作用下沿x軸從x=a移動(dòng)到力的方向與運(yùn)動(dòng)方向平行,求變力所做的功。xabxxxd?在其上所作的功元素為xxFWd)(d?因此變力F(
2025-01-13 21:35
【總結(jié)】課堂講練互動(dòng)活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)定積分在物理中的應(yīng)用課堂講練互動(dòng)活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)【課標(biāo)要求】1.通過具體實(shí)例了解定積分在物理中的應(yīng)用.2.會(huì)求變速直線運(yùn)動(dòng)的路程、位移和變力作功問題.【核心掃描】利用定積分求變速直線運(yùn)動(dòng)的路程、位移和變力所作的功.(重點(diǎn))課堂講練互動(dòng)活頁
2025-01-13 21:43
【總結(jié)】定積分的應(yīng)用習(xí)題課例1如圖,曲線y=x2(x≥0)與切線l及x軸所圍成圖形的面積為,求切線l的方程.112y=2x-1xyOlBCAy=x2例2設(shè)動(dòng)拋物線y=ax2+bx(a<0,b>0)與x軸所圍成圖形的面積為S,若該拋物線與直線x+y
2024-11-12 17:13
【總結(jié)】定積分的簡(jiǎn)單應(yīng)用定積分在幾何中的應(yīng)用??badxxfA)(???badxxfxfA)]()([12:()()|()()bbaafxdxFxFbFa????[其中F′(x)=f(x)]xyo)(xfy?abAxyo)(1xfy?
2025-04-29 05:34
【總結(jié)】定積分在幾何中的應(yīng)用江蘇省運(yùn)河中學(xué)陳鋒例1例2在X軸上投影時(shí),如何用定積分表示?例3例4例51234練習(xí):
2025-07-18 21:56
【總結(jié)】在幾何中的應(yīng)用1、定積分的幾何意義:Oxyaby?f(x)x=a、x=b與x軸所圍成的曲邊梯形的面積。xyOaby?f(x)當(dāng)f(x)?0時(shí),由y?f(x)、x?a、x?b與x軸所圍成的曲邊梯形位于x軸的下方,一、復(fù)習(xí)引入鞏固練習(xí)利用定積分的幾何意義
2025-04-29 01:46
【總結(jié)】定積分在幾何中的應(yīng)用定積分的簡(jiǎn)單應(yīng)用:()()|()()bbaafxdxFxFbFa????[其中F′(x)=f(x)]:知識(shí)鏈接Oxyaby?f(x)x?a、x?b與x軸所圍成的曲邊梯形的面積。當(dāng)f(x)?0時(shí),積分
2025-01-20 04:19
【總結(jié)】定積分的元素法一、什么問題可以用定積分解決?二、如何應(yīng)用定積分解決問題?表示為一、什么問題可以用定積分解決?1)所求量U是與區(qū)間[a,b]上的某函數(shù)f(x)有關(guān)的2)U對(duì)區(qū)間[a,b]具有可加性,即可通過“分割,近似,求和,取極限”定積分定義一個(gè)
2025-04-29 05:41
【總結(jié)】定積分的應(yīng)用習(xí)題課例1如圖,曲線y=x2(x≥0)與切線l及x軸所圍成圖形的面積為,求切線l的方程.112y=2x-1xyOlBCAy=x2例2設(shè)動(dòng)拋物線y=ax2+bx(a<0,b>0)與x軸所圍成圖形的面積為S,若該拋物線與直線x+y=4相
2024-11-09 23:27