【總結(jié)】空間幾何體空間幾何體的結(jié)構(gòu)柱、錐、臺、球的結(jié)構(gòu)特征簡單幾何體的結(jié)構(gòu)特征三視圖柱、錐、臺、球的三視圖簡單幾何體的三視圖直觀圖斜二測畫法平面圖形空間幾何體中心投影柱、錐、臺、球的表面積與體積平行投影畫圖識圖柱錐臺球圓錐圓臺
2025-01-14 00:33
【總結(jié)】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43
【總結(jié)】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內(nèi),過點作平面的垂線交半球面于點,過圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點為,該交線上的一點滿足,則、兩點間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-01-14 14:09
【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流空間向量與立體幾何一、選擇題1.若不同直線l1,l2的方向向量分別為μ,v,則下列直線l1,l2中既不平行也不垂直的是()A.μ=(1,2,-1),v=(0,2,4)B.μ=(3,0,-1),v=(0,0,2)C.μ=(0,2,-3)
2025-08-13 17:46
【總結(jié)】高中數(shù)學(xué)精講精練第七章立體幾何初步【知識圖解】【方法點撥】立體幾何研究的是現(xiàn)實空間,認識空間圖形,可以培養(yǎng)學(xué)生的空間想象能力、推理論證能力、運用圖形語言進行交流的能力以及幾何直觀能力??臻g的元素是點、線、面、體,對于線線、線面、面面的位置關(guān)系著重研究它們之間的平行與垂直關(guān)系,幾何體著重研究棱柱、棱錐和球。在復(fù)習(xí)時我們要以下幾點:1.注意
2025-08-20 20:20
【總結(jié)】1基礎(chǔ)題題庫三立體幾何201..已知過球面上A、B、C三點的截面和球心的距離等于球半徑的一半,且AB=BC=AC=2,求球的體積。解析:過A、B、C三點截面的小圓的半徑就是正△ABC的外接圓的半徑332,它是Rt△中060所對的邊,其斜邊為34,即球的半徑為34,∴?81256?V;202.正
2025-08-20 20:22
【總結(jié)】立體幾何大題1.如下圖,一個等腰直角三角形的硬紙片ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高沿CD把△ABC折成直二面角.ABC第1題圖ABCD第1題圖(1)如果你手中只有一把能度量長度的直尺,應(yīng)該如何確定A,B的位置,使二面角A-CD-B是直二面角?證明你的結(jié)論.(2)試在平面AB
2025-04-17 13:17
【總結(jié)】12020年高考數(shù)學(xué)試題分類匯編立體幾何一.選擇題:1.(上海卷13)給定空間中的直線l及平面?,條件“直線l與平面?內(nèi)無數(shù)條直線都垂直”是“直線l與平面?垂直”的(C)條件A.充要B.充分非必要C.必要非充分D.既非充分又非必要2.(全國一11)已知三棱柱111
2025-08-13 03:50
【總結(jié)】第60講合理推理與演繹推理第61講直接證明與間接證明│知識框架知識框架│知識框架1.合情推理與演繹推理(1)了解合情推理的含義.能利用歸納和類比等進行簡單的推理.了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.(2)了解演繹推理的重要性.掌握演繹推理的
2025-04-21 22:27
【總結(jié)】《立體幾何》專題練習(xí)題1.如圖正方體中,E、F分別為D1C1和B1C1的中點,P、Q分別為A1C1與EF、AC與BD的交點,(1)求證:D、B、F、E四點共面;(2)若A1C與面DBFE交于點R,求證:P、Q、R三點共線2.已知直線、異面,平面過且平行于,平面過且平行于,求證:∥.FECByZ
2025-04-17 13:06
【總結(jié)】立體幾何綜合習(xí)題一、考點分析基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①★②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-04-17 12:18
【總結(jié)】雨竹林高考資訊網(wǎng)福建高考招生資訊網(wǎng)2010年高考數(shù)學(xué)二輪專題復(fù)習(xí)教案――立體幾何一、本章知識結(jié)構(gòu):二、重點知識回顧1、空間幾何體的結(jié)構(gòu)特征(1)棱柱、棱錐、棱臺和多面體棱柱是由滿足下列三個條件的面圍成的幾何體:①有兩個面互相平行;②其余各面都是四邊形;③每相鄰兩個四邊形的公共邊都互相平行;棱柱按底面邊數(shù)可分為:三棱柱、四棱柱、五棱柱等.棱柱性質(zhì):①棱
2025-06-08 00:25
【總結(jié)】立體幾何專題之三垂線定理北京大學(xué)光華管理學(xué)院何洋寫在前面的話?高三同學(xué)在對立體幾何的基本知識進行了系統(tǒng)的復(fù)習(xí)之后,對于比較重要的定理、概念以及在學(xué)習(xí)過程中感到難于掌握的問題進行綜合性的專題復(fù)習(xí)是很必要的。在專題復(fù)習(xí)中應(yīng)通過分類、總結(jié),提高對所學(xué)內(nèi)容的認識和理解。今天我和大家共同探討高中立體幾何中的三垂線問題。寫在前面的
2025-05-07 12:06
【總結(jié)】立體幾何河北高碑店一中王金民立體幾何高考命題呈如下幾個主要特點:?(1)題型、題量和難度相對穩(wěn)定,題型一般為“二選一填一解答”或“一選一填一解答”,題量的分值基本控制在總分值的14﹪至8﹪之間,題目難度多見基本題和中檔題,難度系數(shù)一般分布在,略低于全套試題的總計難度。?(2)高考試題的命制都以柱體、錐體為載體,題
2024-11-11 05:49
【總結(jié)】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19