【導(dǎo)讀】等腰三角形的判定。求證BD是角平分線。有一邊上的高也是這邊上的中線的等。腰三角形是等邊三角形。A、1個B、2個C、3個D、4個。的形式,并寫出它的題設(shè)與結(jié)論。這兩條邊所對的角也相等。簡稱為“等角對等邊”。都相等”的逆命題,并證明該逆命。直角三角形的兩直角邊的平方和等于斜。使∠B’=900,B’C’=BC,A’B’=AB. ∴△A’B’C’≌△ABC. 首先轉(zhuǎn)化“已知….求證….”
【總結(jié)】等腰三角形的判定△ABC中AB=AC請你說說等腰三角形的性質(zhì)有哪些?1、等腰三角形兩底角相等(等邊對等角),2、等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合(三線合一)。,如果有兩個角相等,那么它們所對的邊有什么關(guān)系?已知:如圖,在ΔOAB中,∠A=∠
2024-11-24 17:30
【總結(jié)】如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角度等邊)ABC2、如圖,下列推理正確嗎?ABCD21∵∠1=∠2∴BD=DC(等角對等邊)∵∠1
【總結(jié)】等腰三角形的判定人教版義務(wù)教育課程標準實驗教科書八年級上冊第十二章第三節(jié)?一、教材分析?二、教法分析?三、學法分析?四、教學流程一、教材分析(一)教材地位與作用:“等腰三角形的判定”是在等腰三角形性質(zhì)的基礎(chǔ)上,進一步對等腰三角
2024-11-24 13:18
【總結(jié)】等腰三角形的性質(zhì)倉山鎮(zhèn)中蔣良全復(fù)習已知:∠A(如右圖)求作:射線AD,使AD平分∠A.基本作圖:平分已知角A實驗研究等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊性質(zhì).DACBACBDACB猜想
2024-11-24 15:54
【總結(jié)】等腰三角形的判定一、復(fù)習:1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2、這個定理的逆命題是什么?如果一個三角形有兩個角相等,那么這個三角形是等腰三角形。3、這個命題正確嗎?你能證明嗎?導(dǎo)入新課如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險船只的報警
2024-11-22 01:45
【總結(jié)】等腰三角形的判定1、等腰三角形是怎樣定義的?有兩條邊相等的三角形,叫做等腰三角形。①等腰三角形是軸對稱圖形。③等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱為“三線合一”),它們所在的直線就是等腰三角形的對稱軸。②等腰三角形的兩個底角相等(簡寫成“等邊對等角”)。2、等腰三角形
【總結(jié)】等腰三角形(第二課時)新課標人教版八年級數(shù)學上冊等腰三角形有什么性質(zhì)?.(簡寫成“等邊對等角”)ABC∵AB=AC(已知)∴∠B=∠C(等邊對等角)ABCD、底邊上的中線、底邊上的高互相重合.(簡寫成“
2024-11-21 04:19
【總結(jié)】華東師大版七年級(下冊)(第一課時)設(shè)計軸對稱圖案復(fù)習引入兩腰相等;等腰三角形有哪些特征呢?ABC,(簡稱“等邊對等角”);、底邊上的中線和底邊上的高互相重合。(簡稱“三線合一”),對稱軸是底邊的中垂線。等腰三角形的判定實驗研究閱讀材料:如圖,△ABC
2024-12-08 14:08
【總結(jié)】等腰三角形(一)下面有幾個三角形(有三邊不等的、只有兩邊相等的、三邊全相等的各類三角形紙片若干個)請大家對這些三角形分類.想一想你分類的理由是什么?等腰三角形三條邊都相等的等邊三角形(也叫正三角形)三條邊都不相等按邊來分三角形不等邊三角形底邊和腰不相等的等腰三角形,標
2024-11-10 01:47
【總結(jié)】探索·合作·創(chuàng)新三步五環(huán)教學法張麗紅學習目標探索·合作·創(chuàng)新三步五環(huán)教學法、等邊三角形的性質(zhì)和判定進行簡單的計算、推理證明。,構(gòu)建等腰三角形的知識體系。,數(shù)形結(jié)合,轉(zhuǎn)化,方程等數(shù)學思想方法。探索·合作·創(chuàng)新三步五環(huán)教學法名
【總結(jié)】有兩條邊相等的三角形叫等腰三角形.(isoscelestriangle)等腰三角形的有關(guān)概念腰腰底邊底角底角頂角ABC腰底邊頂角底角∠AAB,ACBC∠B,∠C識別等腰三角形的有關(guān)邊、角條件
2024-11-09 05:34
【總結(jié)】ABC等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊AB和AC叫做腰;另一條邊BC叫做底邊;兩腰所夾的角∠BAC叫做頂角;底邊與腰的夾角∠ABC和∠ACB叫做底角底角底角腰腰底邊
2024-08-25 00:54
2024-08-25 01:46
【總結(jié)】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質(zhì)1、等腰三角形的兩底角相等:∠B=∠C性質(zhì)2、等腰三角形三線合一性質(zhì)3、等腰三角形是軸對稱圖形,
2025-08-05 10:34
【總結(jié)】第一篇:等腰三角形 全等三角形 一、教學目標 探索并掌握兩個三角形全等的條件:“ASA”“AAS”, 經(jīng)歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達、邏輯推理等能力;并通過對知識方...
2024-11-15 06:05