【總結(jié)】常系數(shù)線性方程組基解矩陣的計(jì)算董治軍(巢湖學(xué)院數(shù)學(xué)系,安徽巢湖238000)摘要:微分方程組在工程技術(shù)中的應(yīng)用時(shí)非常廣泛的,不少問(wèn)題都?xì)w結(jié)于它的求解問(wèn)題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無(wú)法通過(guò)積分得到的,但當(dāng)系數(shù)矩陣是常數(shù)矩陣時(shí),可以通過(guò)方法求出基解矩陣,這時(shí)可利用矩陣指數(shù)t,給出基解矩陣的一般形式,本文針對(duì)應(yīng)用最廣泛的常系數(shù)
2025-06-23 07:32
【總結(jié)】)(xfyqypy??????),(為常數(shù)qp根據(jù)解的結(jié)構(gòu)定理,其通解為Yy?*y?非齊次方程特解齊次方程通解求特解的方法根據(jù)f(x)的特殊形式,的待定形式,代入原方程比較兩端表達(dá)式以確定待定系數(shù).①—待定系數(shù)法第七節(jié)(2)二階常系數(shù)非齊次線性微分方程)([exQx??
2025-04-21 04:37
【總結(jié)】)(xfqyypy??????二階常系數(shù)非齊次線性方程對(duì)應(yīng)齊次方程,0??????qyypy通解結(jié)構(gòu),yYy??常見類型),(xPm,)(xmexP?,cos)(xexPxm??,sin)(xexPxm??難點(diǎn):如何求特解?方法:待定系數(shù)法.)()(xPexfmx??一、
2025-10-10 04:26
【總結(jié)】§常系數(shù)線性微分方程的解法-對(duì)于一般的線性微分方程沒(méi)有普遍的解法基本點(diǎn)v常系數(shù)線性微分方程及可化為這一類型的方程的解法-只須解一個(gè)代數(shù)方程。v某些特殊的非齊次微分方程也可通過(guò)代數(shù)運(yùn)算和微分運(yùn)算求得它的通解。掌握:v特征方程與特征根,及求常系數(shù)線性方程的通解v待定系數(shù)法與拉普拉斯變換法求非齊次線性方程的特解
2025-04-29 01:03
【總結(jié)】一、定義)(1)1(1)(xfyPyPyPynnnn?????????n階常系數(shù)線性微分方程的標(biāo)準(zhǔn)形式0??????qyypy二階常系數(shù)齊次線性方程的標(biāo)準(zhǔn)形式)(xfqyypy??????二階常系數(shù)非齊次線性方程的標(biāo)準(zhǔn)形式§7.常系數(shù)齊次線性微分方程二、二階常系數(shù)齊次線性方程解法-特征方程法,r
2025-01-08 13:22
【總結(jié)】差分方程離散系統(tǒng)的定義離散系統(tǒng)在數(shù)學(xué)上定義為將輸入序列x(n)映射成輸出序列y(n)的惟一性變換或運(yùn)算。亦即將一個(gè)序列變換成另一個(gè)序列的系統(tǒng),y(n)=T[x(n)]通常將上式表示成圖2-20所示的框圖。圖2-20離散系統(tǒng)的模型一.離散線性非移變系統(tǒng)及卷積運(yùn)算(1)系統(tǒng)的線性特性滿足疊加原理的
2025-05-13 06:45
【總結(jié)】第五節(jié)二階常系數(shù)線性齊次微分方程一、二階常系數(shù)線性齊次微分方程解的性質(zhì)與通解結(jié)構(gòu)二、二階常系數(shù)線性齊次微分方程的解法的方程,稱為二階線性微分方程.當(dāng)時(shí),方程(1)成為)1()()()(xfyxQy'xPy
2025-08-23 08:38
【總結(jié)】用Matlab求解差分方程問(wèn)題一階線性常系數(shù)差分方程高階線性常系數(shù)差分方程線性常系數(shù)差分方程組差分方程是在離散時(shí)段上描述現(xiàn)實(shí)世界中變化過(guò)程的數(shù)學(xué)模型?例1、某種貨幣1年期存款的年利率是r,現(xiàn)存入M元,問(wèn)年后的本金與利息之和是多少??Xk+1=(1+r)xk,k=0,1
2025-05-14 04:23
【總結(jié)】計(jì)算機(jī)控制技術(shù)課程講義1步驟:1、給定系統(tǒng)的輸入和必要初始條件。(輸出的響應(yīng)函數(shù)必然在某種輸入激勵(lì)條件下產(chǎn)生)2、對(duì)微分方程兩邊進(jìn)行拉氏變換,變微分運(yùn)算為代數(shù)運(yùn)算。3、在S域中解出系統(tǒng)輸出的拉氏變換表達(dá)式,應(yīng)用拉氏反變換求得其時(shí)域解。用拉氏變換求解線性微分方程計(jì)算機(jī)控制技術(shù)課程講義2例:前例3力學(xué)系統(tǒng),系統(tǒng)輸出:
2025-05-12 12:11
【總結(jié)】第七節(jié)二階常系數(shù)線性非齊次微分方程一、二階常系數(shù)線性非齊次微分方程的通解結(jié)構(gòu)及特解的疊加法二、二階常系數(shù)線性非齊次微分方程的解法)1()()(,為常數(shù),qpxfqypy'y''???二階常系數(shù)線性非齊次微分方程的一般形式)2(
2025-09-19 14:58
【總結(jié)】一、差分的概念二、差分方程的概念三、常系數(shù)線性差分方程解的結(jié)構(gòu)第六節(jié)差分與差分方程的概念常系數(shù)線性差分方程解的結(jié)構(gòu)四、小結(jié)一、差分的概念.Δ,)1()()1()0(:).(111210xxxxxxxyyyyyyyyyyyxfxfffxxfy???
2025-08-21 12:41
【總結(jié)】利用非線性方程解決綜合問(wèn)題油庫(kù)問(wèn)題演示一個(gè)對(duì)稱的地下油庫(kù),內(nèi)部設(shè)計(jì)如圖(P235,圖)所示:橫截面積為圓,中心位置處的截面半徑為3m,上下底處的半徑為2m,高為12m,橫截面的兩側(cè)是頂點(diǎn)在中心位置的拋物線,試求:(1)油庫(kù)內(nèi)油面的深度為h(從底部算起)時(shí),庫(kù)內(nèi)油量的容積V(h)。(2)設(shè)計(jì)測(cè)量油庫(kù)油量
2025-08-05 20:28
【總結(jié)】線性定常連續(xù)系統(tǒng)狀態(tài)方程的解?求解狀態(tài)方程是進(jìn)行動(dòng)態(tài)系統(tǒng)分析與綜合的基礎(chǔ),是進(jìn)行定量分析的主要方法。?本節(jié)講授的狀態(tài)方程求解理論是建立在狀態(tài)空間上,以矩陣代數(shù)運(yùn)算來(lái)描述的定系數(shù)常微分方程解理論。?下面基于矩陣代數(shù)運(yùn)算的狀態(tài)方程解理論中,引入了狀態(tài)轉(zhuǎn)移矩陣這一基本概念。?該概念對(duì)我們深刻理解系統(tǒng)的動(dòng)態(tài)特性、狀態(tài)的變遷(動(dòng)態(tài)演變
2025-08-15 20:38
【總結(jié)】1市場(chǎng)經(jīng)濟(jì)中的蛛網(wǎng)模型2減肥計(jì)劃——節(jié)食與運(yùn)動(dòng)差分方程模型1市場(chǎng)經(jīng)濟(jì)中的蛛網(wǎng)模型問(wèn)題供大于求現(xiàn)象商品數(shù)量與價(jià)格的振蕩在什么條件下趨向穩(wěn)定當(dāng)不穩(wěn)定時(shí)政府能采取什么干預(yù)手段使之穩(wěn)定價(jià)格下降減少產(chǎn)量增加產(chǎn)量?jī)r(jià)格上漲供不應(yīng)求描述商品數(shù)量與價(jià)格的變化規(guī)律數(shù)量與價(jià)格
2025-10-09 14:16
【總結(jié)】?遞推關(guān)系()?遞推()的特征方程?遞推()的解?遞推()特征根互不同?遞推()特征根有重根遞推關(guān)系()?常系數(shù)k階線性齊次遞推關(guān)系an=c1an-1+c2an-2+…+ckan-k()其中c1,c2,…,ck是實(shí)數(shù)常數(shù),ck≠0遞推
2025-01-16 21:11