【正文】
參考文獻(xiàn)[1], , , , FrequencyDomain and TimeDomain FiniteElement Solution of Maxwell’s Equations Using Spectral Lanczos Deposition Method. Comput. Methods Appl. Mech. Engrg. 1999,169:279~296[2],. Hybird FullWave Analysis of Viahole Grounds Using FinitDifference and FiniteElement TimeDomain Methods. IEEE Transactions on Microwave Theory and Techniques. 1997,45(12):2217~2222[3] Kane S. Yee Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J].IEEE Trans Antennas Propagation, 1966,AP14(3):302~307[4] and . Numerical solution of steadystate EM scattering problems using the timeMaxwell’s equations. [J] IEEE Theroy Tech.,Aug. 1975,MTT23:623~630[5] , and . Stability analysis of the finite difference time domain method applied to unbounded electromagnetic problem [J]. IEEE Antennas and Propagation Society International Symposium,Dallas:May 1990,(4):1640~1643[6]. Review of the formulation and applications of the finitedifference timedomain method for numerical modeling of electromagnetic wave interactions with arbitrary structures [J]. Wave Motion,June 1988,10(6): 547~582[7] and . Numerical dispersion characteristics and stability factor for the TDFD method [J].Electronics Letters, July 1990, 26(7): 485~487[8] , ,and etc.. Relative accuracy of several finitedifference timedomain methods in two and three dimensions [J]. IEEE Transactions on Antennas and Propagation,AP41(12):1732~1737[9] . Numerical dispersion and stability characteristics of finitedifference timedomain methods on nonorthogonal meshes [J]. IEEE Transactions on Antennas and Propagation,AP41(2):233~235[10] and . Dispersive parison for DSI and tenorbased nonorthogonal FDTD [J]. IEEE Microwave and Guided Wave Letters, May 1996,6(5):193~195[11] and . Numerical dispersion relation for FDTD method in general curvilinear coordinates [J]. IEEE Microwave and Guided Wave Letters, ,7(2):48~50[12] and . Error estimates for Yee’s method on nonuniform grids [J]. IEEE Transactions on Magnetics,30(5):3200~3203[13] and .Total field versus scattered field finite difference codes:a parative assessment[J].IEEE Transactions on Nuclear Science,NS30(6):4583~4588[14].Absorbing boundary conditions for the finitedifference approximation of the timedomain electromagnetic field equations[J].IEEE Transactions on Electromagnetic Compatibility,EMC23(4):377~382[15] and . Absorbing boundary conditions for the numerical simulation of waves [J].Mathematics of the Computation,July 1977,31(139):629~651[16].A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,114(2):185~200[17].Perfectly matched layer for the FDTD solution of wavestructure interaction problem[J].IEEE Transactions on Antennas Propagation,AP44(1):110~117[18].Threedimensional perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,127(2):363~379[19], and .A perfectly matched anisotropic absorber for use as an absorbing boundary condition[J].IEEE Transactions on Antennas and Propagation,AP43(12):1460~1463[20].An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices[J].IEEE Transactions on Antennas and Propagation,AP44(12):1630~1639[21] currents on a body of revolution by an electromagnetic pulse [J]. IEEE Transactions on Electromagnetic Compatibility,May 1971,EMC13(2):41~44[22].THREDS: a finitedifference timedomain EMP code in 3D spherical coordinates [J].IEEE Transactions on Nuclear Science,NS30(6):4592~4595[23], and .A subgridding method for the timedomain finitedifference method to solve Maxwell’s equations [J].IEEE Transactions on Microwave Theory and Techniques,MTT39(3):471~479[24] and .A consistent subgridding scheme for the finite difference time domain method[J].International Journal of Numerical Modeling: Electronic Network Device and Fields,1996,9(5):359~374[25], and .Timedomain extrapolation to the far field based on FDTD calculations[J].IEEE Transactions on Antennas and Propagation,AP39(3):410~413[26], and etc..A finitedifference timedomain near zone to far zone transformation[J].IEEE Transactions on Antennas and Propagation,AP39(4):429~433[27], and .A two dimensional timedomain nearzone to farzone transformation[J].IEEE Transactions on Antennas and Propagation,July 1992,AP40(7):848~851[28], and .Timedomain fields exterior to a two dimensional FDTD space[J].IEEE Transactions on Antennas and Propagation,AP45(11):1655~1663[29]馮慈璋,馬西奎. 工程電磁場(chǎng)導(dǎo)論 [M]. 高等教育出版社 2003[30] .Electromagnetic Simulation Using the FDTD Method[M].New York:IEEE Press,2000[31]. A Dispersive Outer Radiation Boundary Condition for FDTD Calculation. Proceedings of the 10th Annual Review of Progress in Applied Computational Electromagnetics. 1994,1:240~247[32]Engquist B, Majda A. Absorbing Boundary Conditions for the Numerical Simulation of Waves. Mathematics of Computation. 1977,31(7):629~651[33],. Theory and Application of Radiation Boundary Trans. ,36(12)1797~1812[34] 李清亮. FDTD入射波解析設(shè)置的約束條件. 電波科學(xué)學(xué)報(bào). 1997,12(3):334~337[35] 葛德彪.“關(guān)于用時(shí)域有限差分方法分析電磁散射問(wèn)題的研究報(bào)告”.電波科學(xué)學(xué)報(bào),1992,7(3):80~85.[36] 徐立勤,曹偉 電磁場(chǎng)與電磁波理論 北京:科學(xué)出版社,2006[37] 王海鵑 快速Fourier變換算法及Matlab程序?qū)崿F(xiàn) 通化師范學(xué)院學(xué)報(bào) July 2006 No .4 13~15[38] [M].北京:科學(xué)出版社,1985[39] 周曉軍,喻志遠(yuǎn),林為干,,1998,17(3):236~240[40]張曉燕,周慶,(自然科學(xué)版),2003,25(6):507~510[41] 尹家賢,劉克成,劉培國(guó),毛鈞杰. FDTD中波導(dǎo)激勵(lì)源研究 國(guó)防科技大學(xué)學(xué)報(bào), 2001, 23(2) :99~10