【總結】用心愛心專心1初中數(shù)學二次函數(shù)復習專題〖知識點〗二次函數(shù)、拋物線的頂點、對稱軸和開口方向〖大綱要求〗1.理解二次函數(shù)的概念;2.會把二次函數(shù)的一般式化為頂點式,確定圖象的頂點坐標、對稱軸和開口方向,會用描點法畫二次函數(shù)的圖象;3.會平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2
2024-11-22 03:15
【總結】2018秋季--周家樂第1-3講二次函數(shù)全章綜合提高【知識清單】※一、網絡框架※二、清單梳理1、一般的,形如的函數(shù)叫二次函數(shù)。例如等都是二次函數(shù)。注意:系數(shù)不能為零,可以為零。2、二次函數(shù)的三種解析式(表達式)①一般式:②頂點式:,頂點坐標為③交點式:3、二次函數(shù)的圖像位置與系數(shù)之間的關系①:決定拋物線的開口方向及開口的大小。當時,開
2025-04-16 12:39
【總結】初三數(shù)學培優(yōu)講義幫邦教育 二次函數(shù)專題復習專題一:二次函數(shù)的圖象與性質本專題涉及二次函數(shù)概念,二次函數(shù)的圖象性質,、選擇題為主,也有少量的解答題出現(xiàn).二次函數(shù)的圖象是一條拋物線,它的對稱軸是直線x
2025-04-16 13:10
【總結】中考二次函數(shù)專題復習知識點歸納:一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調:和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結構特征:⑴等號左邊是函數(shù),右邊是關于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基本形式1.
2025-04-16 12:57
【總結】........二次函數(shù)與三角形的存在性問題一、預備知識1、坐標系中或拋物線上有兩個點為P(x1,y),Q(x2,y)(1)線段對稱軸是直線(2)AB兩點之間距離公式:中點公式:已知兩點,則線段
2025-03-24 06:24
【總結】范文范例學習指導二次函數(shù)動點問題典型例題等腰三角形問題1.如圖,在平面直角坐標系中,已知拋物線y=ax2+bx的對稱軸為x=,且經過點A(2,1),點P是拋物線上的動點,P的橫坐標為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關于直線PB的對稱點為D,連接CD,AD,過點A作AE⊥x軸,垂足為E.(1)求拋物線的解析式;(2)填空:①用含m
2025-08-05 01:44
【總結】....二次函數(shù)動點問題典型例題等腰三角形問題1.如圖,在平面直角坐標系中,已知拋物線y=ax2+bx的對稱軸為x=,且經過點A(2,1),點P是拋物線上的動點,P的橫坐標為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關于直線PB的對稱點為D,連接CD,
【總結】2017-2018學年九年級數(shù)學上冊期末復習--二次函數(shù)一 、選擇題二次函數(shù)y=(x-1)2+2的最小值是()A.2 B.1 C.-1 D.-2若二次函數(shù)y=x2+bx+5配方后為y=(x-2)2+k,則b,k的值分別為()A.0,5 B.0,1 C.-4,5 D.-4,1已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2
2025-06-23 13:56
【總結】........二次函數(shù)中直角三角形存在性問題1.找點:在已知兩定點,確定第三點構成直角三角形時,要么以兩定點為直角頂點,,構造兩條直線與已知直線垂直;以動點為直角頂點時,以已知線段為直徑構造圓找點2.方法:以兩定點為直角
【總結】二次函數(shù)精講基礎題型一認識二次函數(shù)1、y=mxm2+3m+2是二次函數(shù),則m的值為() A、0,-3 B、0,3 C、0 D、-32、關于二次函數(shù)y=ax2+b,命題正確的是() A、若a0,則y隨x增大而增大 B、x0時y隨x增大而增大。 C、若x
2025-03-24 06:25
【總結】二次函數(shù)中考復習專題教學目標:(1)了解二次函數(shù)的概念,掌握二次函數(shù)的圖象和性質,能正確畫出二次函數(shù)的圖象,并能根據(jù)圖象探索函數(shù)的性質;(2)能根據(jù)具體條件求出二次函數(shù)的解析式;運用函數(shù)的觀點,分析、探究實際問題中的數(shù)量關系和變化規(guī)律。教學重點u二次函數(shù)的三種解析式形式u二次函數(shù)的圖像與性質教學難點u二次函數(shù)與其他函數(shù)共存問題u根據(jù)二次函數(shù)圖像
2025-04-16 13:00
【總結】2015年周末班學案自信釋放潛能;付出鑄就成功!WLS二次函數(shù)的最值問題【例題精講】題面:當-1≤x≤2時,函數(shù)y=2x2-4ax+a2+2a+2有最小值2,求a的所有可能取值.【拓展練習】如圖,在平面直角坐標系xOy中,二次函數(shù)的圖象與軸交于(-1,0)、(3,0)兩點,頂點為.(1)求此二次函數(shù)解析式;
2025-03-24 06:26
【總結】面積類1.如圖,已知拋物線經過點A(﹣1,0)、B(3,0)、C(0,3)三點.(1)求拋物線的解析式.(2)點M是線段BC上的點(不與B,C重合),過M作MN∥y軸交拋物線于N,若點M的橫坐標為m,請用m的代數(shù)式表示MN的長.(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由.考點:二次函數(shù)綜合題.專題
2025-06-23 13:54
【總結】二次函數(shù)專題訓練(含答案)一、填空題,接著再向下平移3個單位,得拋物線.,最大值是.,如果邊長增加x面積就增加y,那么y與x之間的函數(shù)關系是.,通過配方化為的形為.(c不為零),當x取x1,x2(x1≠x2)時,函數(shù)值相等,則x1與x2的關系是
2025-08-05 03:25
2025-06-24 14:44