【總結(jié)】等腰三角形復(fù)習(xí)(二)例題分析?例1已知一腰和底邊上的高,求作等腰三角形。分析:我們首先在草稿上畫(huà)好一個(gè)示意圖,然后對(duì)照此圖寫(xiě)出已知和求作并構(gòu)思整個(gè)作圖過(guò)程……已知:線段a、h求作:△ABC,使AB=AC=a,高AD=h作法:1、作PQ⊥MN,垂足為D2、在DM上截取DA=h3、以點(diǎn)A為圓心,以
2024-11-10 01:47
【總結(jié)】等腰三角形(二)◆隨堂檢測(cè)ABC△中,AB=AC,AB的垂直平分線與AC所在的直線相交所成的角為50?,則底角B?的度數(shù)為_(kāi)__________.等腰三角形一腰上的中線把等腰三角形的周長(zhǎng)分成9和12兩部分,則等腰三角形的腰長(zhǎng)為_(kāi)__________.,已知AB=AC,∠A=36o,AB的中垂
2024-11-11 05:30
【總結(jié)】等腰三角形的判定P143思考如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測(cè)得∠A=∠B.如果這兩艘救生船以同樣的速度同時(shí)出發(fā),能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?OBAOAB已知:如圖,在ΔOAB中,∠A=∠B,求證:OA=OB.證明:過(guò)O點(diǎn)作OC⊥AB,垂
2024-11-24 17:31
【總結(jié)】等腰三角形的性質(zhì)倉(cāng)山鎮(zhèn)中蔣良全復(fù)習(xí)已知:∠A(如右圖)求作:射線AD,使AD平分∠A.基本作圖:平分已知角A實(shí)驗(yàn)研究等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊性質(zhì).DACBACBDACB猜想
2024-11-24 15:54
【總結(jié)】的性質(zhì)?哈五中?初中組?荀輝三角形等腰三角形不等邊三角形等邊三角形底邊和腰不相等的等腰三角形打開(kāi)知識(shí)的大門(mén)?等腰三角形的兩個(gè)底角相等。)底角(頂角已知:?ABC中
【總結(jié)】等腰三角形從數(shù)學(xué)的觀點(diǎn)去思考,你觀察到了什么圖形?魁星閣金字塔侗寨吊腳樓等腰三角形一.基本概念:兩條邊相等的三角形叫做等腰三角形.如圖AB=AC,就是等腰三角形ABC?:相等的兩邊叫做腰另一邊叫做底邊兩腰的夾角叫做頂角腰和底邊的夾角
2024-11-24 17:30
【總結(jié)】探索·合作·創(chuàng)新三步五環(huán)教學(xué)法張麗紅學(xué)習(xí)目標(biāo)探索·合作·創(chuàng)新三步五環(huán)教學(xué)法、等邊三角形的性質(zhì)和判定進(jìn)行簡(jiǎn)單的計(jì)算、推理證明。,構(gòu)建等腰三角形的知識(shí)體系。,數(shù)形結(jié)合,轉(zhuǎn)化,方程等數(shù)學(xué)思想方法。探索·合作·創(chuàng)新三步五環(huán)教學(xué)法名
2024-11-24 13:18
【總結(jié)】等腰三角形的判定1、等腰三角形的性質(zhì)?2、等腰三角形的判定方法都有哪些?定義:有兩邊相等的三角形是等腰三角形還有其他方法嗎?導(dǎo)入新課如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測(cè)得∠A=∠B.如果這兩艘救生船以同樣的速度同時(shí)出發(fā),能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?
【總結(jié)】有兩條邊相等的三角形叫等腰三角形.(isoscelestriangle)等腰三角形的有關(guān)概念腰腰底邊底角底角頂角ABC腰底邊頂角底角∠AAB,ACBC∠B,∠C識(shí)別等腰三角形的有關(guān)邊、角條件
2024-11-09 05:34
【總結(jié)】ABC等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊AB和AC叫做腰;另一條邊BC叫做底邊;兩腰所夾的角∠BAC叫做頂角;底邊與腰的夾角∠ABC和∠ACB叫做底角底角底角腰腰底邊
2025-08-16 00:54
2025-08-16 01:46
【總結(jié)】1、已知:如圖,△ABC中,AB=AC,(1)∠B=50°,則∠C=________(2)∠B=60°,則△ABC為_(kāi)____三角形(有一個(gè)角為60°的等腰三角形是正三角形)ABC50°正2、已知:△ABC中,∠B=∠C,
【總結(jié)】執(zhí)教者市三中江建軍節(jié)選自人教版八年級(jí)上冊(cè)20世紀(jì)著名數(shù)學(xué)家赫爾曼·外爾所說(shuō)的,“對(duì)稱是一種思想,人們畢生追求,并創(chuàng)造次序、美麗和完善……”如圖,在△ABC中,∠ABC的角平分線交AC于P,一個(gè)同學(xué)得到了PA=PC,你覺(jué)得對(duì)嗎?P問(wèn)題添加什
2024-11-09 01:34
【總結(jié)】第一篇:等腰三角形 全等三角形 一、教學(xué)目標(biāo) 探索并掌握兩個(gè)三角形全等的條件:“ASA”“AAS”, 經(jīng)歷作圖、比較、證明等探究過(guò)程,提高分析、作圖、歸納、表達(dá)、邏輯推理等能力;并通過(guò)對(duì)知識(shí)方...
2024-11-15 06:05
【總結(jié)】等腰三角形(復(fù)習(xí)教案)教學(xué)目標(biāo)·知識(shí)與技能目標(biāo)建立知識(shí)框架結(jié)構(gòu)圖,了解掌握等腰三角形知識(shí)。復(fù)習(xí)等腰三角形有關(guān)定理的探索與證明,證明的思路和方法。能利用等腰三角形的有關(guān)定理,證明線段相等、角相等及直線垂直等。·過(guò)程方法通過(guò)回顧有關(guān)定理的證明,進(jìn)一步掌握綜合法的證明法。提高學(xué)生用規(guī)定數(shù)學(xué)語(yǔ)言表達(dá)
2025-01-09 09:11