【總結(jié)】第10講一次函數(shù)考點一次函數(shù)的概念形如①(k,b是常數(shù),其中k≠0)的函數(shù)叫做一次函數(shù).特別地,當(dāng)b=0時,一次函數(shù)y=kx+b變?yōu)閥=kx(k為常數(shù),k≠0),這時y叫做x的②.y=kx+b正比例函數(shù)點撥?一次函數(shù)的結(jié)構(gòu)特征:(1)k≠0;
2025-06-18 12:26
【總結(jié)】第4講二次函數(shù),體會二次函數(shù)的意義.,能通過圖象了解二次函數(shù)的性質(zhì).3.會用配方法將數(shù)字系數(shù)的二次函數(shù)的表達式化為y=a(x-h(huán))2+k(a≠0)的形式,并能由此得到二次函數(shù)圖象的頂點坐標(biāo)、開口方向,畫出圖象的對稱軸,并能解決簡單實際問題..1.(2022年湖南邵陽)若拋物線
2025-06-17 18:47
【總結(jié)】第三章函數(shù)第一部分教材同步復(fù)習(xí)一次函數(shù)知識要點·歸納一般地,如果y=kx+b(k,b是________,k≠0),那么,y叫做x的一次函數(shù),特別地,當(dāng)________時,一次函數(shù)y=kx+b就變?yōu)閥=kx(k為常數(shù),k≠0),這時,y叫做x的正比例函數(shù).
2025-06-12 14:49
2025-06-21 07:09
【總結(jié)】教材同步復(fù)習(xí)第一部分第三章函數(shù)課時10一次函數(shù)2?1.一次函數(shù)與正比例函數(shù)的概念?一般地,形如y=kx+b(k,b是①________,k≠0)的函數(shù),叫做一次函數(shù);特別地,當(dāng)②_________時,一次函數(shù)y=kx+b就變?yōu)閥=kx(k為常數(shù),k≠0),這時,y叫做x的正比例函數(shù).
2025-06-17 18:13
【總結(jié)】第二節(jié)一次函數(shù)考點一一次函數(shù)的圖象與性質(zhì)百變例題3已知關(guān)于x的函數(shù)y=(m-2)x+(m+2).(1)m為何值時,此函數(shù)為正比例函數(shù);【自主解答】解:若此函數(shù)為正比例函數(shù),則m-2≠0,且m+2=0,解得m=-2;(2)m為何值時,一次函數(shù)y隨x的增大而減??;【自主解答】解:一次函數(shù)y
2025-06-16 12:07
【總結(jié)】◆知識清單◆考點突破◆課堂練兵◆知識清單◆考點突破◆課堂練兵◆知識清單◆考點突破◆課堂練兵◆知識清單◆考點突破◆課堂練兵◆知識清單◆考點突破◆課堂練兵◆知識清單◆考點突破◆課堂練兵◆知識清單◆考點突破◆課堂練兵◆知識清單◆考點突破◆
2025-06-21 04:38
【總結(jié)】第三章函數(shù)第12講二次函數(shù)1.二次函數(shù)的概念:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù).知識梳理2.二次函數(shù)的三種形式:(1)一般形式:y=ax2+bx+c,對稱軸是__;二次函數(shù)的頂點坐標(biāo)是______________.(2)頂點式:y=
2025-06-21 12:25
2025-06-21 04:39
2025-06-14 00:31
【總結(jié)】第三章函數(shù)第10講一次函數(shù)01課后作業(yè)02能力提升目錄導(dǎo)航課后作業(yè)1.(2022湘西州)一次函數(shù)y=x+2的圖象與y軸的交點坐標(biāo)為()A.(0,2)B.(0,-2)C.(2,0)D.(-2,0)
2025-06-20 01:01
2025-06-14 00:35
【總結(jié)】第12講二次函數(shù)的圖象與性質(zhì)考點二次函數(shù)的概念及表達式1.概念:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù).2.解析式:一般式y(tǒng)=ax2+bx+c(a,b,c為常數(shù),a≠0)頂點式①(a,h,k為常數(shù),a≠0)交點式②
2025-06-12 01:04