【正文】
空氣動力學的兩個重大突破 ——跨音速面積律 和 超臨界翼型 ,均是 由 Richard T. Whitb提出來的。(還有個是 翼尖小翼 ) DESIGN BOX 高速機翼的特征 ( 1)薄翼型 A10(雷電,疣豬攻擊機 ) Root: NACA 6716 TIP: NACA 6713 F15(鷹式戰(zhàn)斗機) Root: NACA 64A(.055) TIP: NACA 64A203 Flight Mach Number, M∞ Thickness to chord ratio, % DESIGN BOX ( 2)后掠翼 ? All modern highspeed aircraft have swept wings: WHY? WHY WING SWEEP? V∞ V∞ Wing sees ponent of flow normal to leading edge WHY WING SWEEP? V∞ Wing sees ponent of flow normal to leading edge V∞,n V∞,n V∞ W W ? Recall MCR ? If M∞ MCR large increase in drag ? By sweeping wings of subsonic aircraft, drag divergence is delayed to higher Mach numbers WHY WING SWEEP? WHY WING SWEEP? ? Alternate Explanation: – Airfoil has same thickness but longer effective chord – Effective airfoil section is thinner – Making airfoil thinner increases critical Mach number ? Sweeping wing usually reduces lift for subsonic flight SWEPT WINGS: SUPERSONIC FLIGHT ???????????M1s in 1?? If leading edge of swept wing is outside Mach cone, ponent of Mach number normal to leading edge is supersonic → Large Wave Drag ? If leading edge of swept wing is inside Mach cone, ponent of Mach number normal to leading edge is subsonic → Reduced Wave Drag WING SWEEP COMPARISON F100D English Lightning SWEPT WINGS: SUPERSONIC FLIGHT M∞ 1 M∞ 1 () ? 機翼升力線斜率的壓縮性修正 (大展弦比直機翼) 0011, c o m pc o m p, c o m paaa ( e A R )???00 21, c o m paaM ???02011c o m paaM a ( e A R )?????() () () ARaaaddC L?? 001 ???() 02001aa( a A R ) a ( A R )?????() () ? 機翼升力線斜率的壓縮性修正(小展弦比直機翼) 00 21, c o m paaM ???022001aaM ( a A R ) a ( A R )????? ? ?() 02001a c o sa[ ( a c o s ) A R ] a c o s ( A R )????? ? ? ?() ? 機翼升力線斜率的壓縮性修正(后掠翼) 0221aM c o s???將上式中 0a用 代替: 02 2 2001a c o saM c o s [ ( a c o s ) A R ] a c o s ( A R )?????? ? ? ? ? ?() ? 為 1/2弦線后掠角 CFD應用:跨音速翼型和機翼 亞聲速可壓縮流線化理論的限制: 薄翼小攻角 來流馬赫數不超過 無粘、無旋假設 采用 CFD方法求解跨聲速流動的歷史發(fā)展過程: 跨聲速小擾動非線性方程 全速勢方程: 2 2 2222 2 211? ? ? ?( M ) Mx y V x x? ? ? ? ??????? ? ? ? ?? ? ? ??? ? ? ???() 0))((2)(11)(112222222222????????????????????????????????yxyxayyaxxa???????() Euler方程的 CFD求解 0Sd V V d St???? ? ? ?? ??? ??? ?v s sV d V V d S V p d St??? ? ? ? ?? ??? ?? ??2222v s sVVe d V e V d S p V d St ??? ? ? ?? ? ? ? ? ? ? ?? ? ? ?? ? ? ? ???? ?? ??( ) ( ) ( ) NS方程的 CFD求解 0Sd V V d St???? ? ? ?? ??? ??? ? F v i s c o u sv s sV d V V d S V p d St??? ? ? ? ? ?? ??? ?? ??2222vsv isc ous v isc oussVVe dV e V dStp V dS Q W??? ? ? ??? ? ? ? ?? ? ? ?? ? ? ? ?? ? ? ???? ????( ) ( ) ( ) NACA0012翼型, Grid:265*65 XY 0 . 5 0 0 . 5 1 0 . 500 . 51優(yōu)化設計 小結 對于二維、無旋、等熵、定常的可壓縮流, 精確的速度勢方程為: ( ) 其中 () 這一方程是精確的,但它是非線性的,因此很難求解。在目前,還找不到該方程的解析解。 0))((2)(11)(112222222222 ????????????????????????????????yxyxayyaxxa????????????????????? 22202 )()(21yxaa ??? 對于小擾動情況(細長體、小迎角),精確速度勢方程可以近似為: ( ) 以上小擾動速度勢方程是近似的,但它是線性的,因此求解容易得多。這一方程在亞音速下( )和超音速下( )成立。在跨音速( ) 和高超音速 ( )不成立。 線性化壓強系數表示為: ( ) 近似物面邊界條件為 : () 0??)1( 22222 ???????? yxM?? ?? ?M5??M ?? ?M??M??? V uC p ?2?? ta n? ???? Vy PrandtlGlauert 相似律是一個壓縮性修正公式,可將不可壓流動的結果經過修改來考慮壓縮性的影響。 () () () 20,1 ???MCC pp20,1 ???Mcc ll20,1 ???Mcc mm The critical Mach number is that freestream Mach number at which sonic flow is first achieved at some point on the surface of a body. For thin airfoils, the critical Mach number can be estimated as shown in . 臨界馬赫數是指物體表面流速度最快點達到音速時所對應的自由來流馬赫數。對于薄翼型,可由圖 . The area rule for transonic flow states that the crosssectional area distribution of an airplane, including fuselage, wing, and tail, should have a smooth distribution along the axis of the airplane. 跨音速面積律指出,沿飛機軸線其包括機身,機翼,尾翼的橫截面積分布應該是光滑連續(xù)的,這樣其跨音速阻力可以得到有效減?。? Supercritical airfoils are specially designed profiles to increase the dragdivergence Mach number. 超臨界翼型是經過特殊設計的翼型 , 其目的是增大翼型的阻力發(fā)散馬赫數 . The dragdivergence Mach number is that freestream Mach number at which a large rise in the drag coefficient occurs, as shown in Fig. . 阻力發(fā)散馬赫數是指如圖 開始急劇增大時所對應的自由來流馬赫數.