【總結(jié)】....線性代數(shù)復(fù)習(xí)總結(jié)大全第一章行列式二三階行列式N階行列式:行列式中所有不同行、不同列的n個元素的乘積的和(奇偶)排列、逆序數(shù)、對換行列式的性質(zhì):①行列式行列互
2025-04-17 08:31
【總結(jié)】線性代數(shù)復(fù)習(xí)要點第一部分行列式1.排列的逆序數(shù)2.行列式按行(列)展開法則3.行列式的性質(zhì)及行列式的計算行列式的定義1.行列式的計算:①(定義法)②(降階法)行列式按行(列)展開定理:行列式等于它的任一行(列)的各元素與其對應(yīng)的代數(shù)余子式的乘積之和.推論:行列式某一行(列)的元素與另一行(列)的對應(yīng)元
2025-06-28 21:51
【總結(jié)】12022線性代數(shù)期末試題及參考答案一、判斷題(正確填T,錯誤填F。每小題2分,共10分)1.A是n階方陣,R??,則有AA???。()2.A,B是同階方陣,且0?AB,則111)(????ABAB。()3.如
2025-01-06 17:51
2025-01-09 10:36
【總結(jié)】《線性代數(shù)》期終試卷4(3學(xué)時)本試卷共九大題一、選擇題(本大題共4個小題,每小題2分,滿分8分):1.若階方陣均可逆,,則(A)(B)(C)(D)答()2.設(shè)是元齊次線性方程組的解
2025-01-08 20:53
【總結(jié)】《線性代數(shù)》期終試卷3(3學(xué)時)一、填空題(15’):1.設(shè)向量組,它的秩是(),一個最大線性無關(guān)組是().2.已知矩陣和相似,則x=().3.設(shè)是秩為的矩
【總結(jié)】線性代數(shù)復(fù)習(xí).課程重點:解線性方程組★(1)行列式(2)矩陣(3)矩陣初等變換與矩陣的秩(4)向量(5)方陣的相似對角化(6)二次型nn???解個方程個未知量的線性方程組mn???解個方程個未知量的線性方程組解線性方程組判斷線性方程
2025-02-19 06:24
【總結(jié)】《線性代數(shù)》期終試卷2(2學(xué)時)本試卷共八大題一、是非題(判別下列命題是否正確,正確的在括號內(nèi)打√,錯誤的在括號內(nèi)打×;每小題2分,滿分20分):1.若階方陣的秩,則其伴隨陣。()2.若矩陣和矩陣滿
2025-01-06 17:50
【總結(jié)】《線性代數(shù)》期終試卷1(2學(xué)時)本試卷共七大題一、填空題(本大題共7個小題,滿分25分):1.(4分)設(shè)階實對稱矩陣的特征值為,,,的屬于的特征向量是,則的屬于的兩個線性無關(guān)的特征向量是();2.(4分)
2025-01-09 10:37
【總結(jié)】線性代數(shù)復(fù)習(xí)提綱:一:關(guān)于計算方面的內(nèi)容。1.用矩陣消元法求解線性方程組AX=b(分b=0與b≠0兩種情況)的全部解。例題見P97—例3和P93—例如。2.將向量β表示成向量組·····的線性組合。例題見P64—例6
2024-10-04 16:40
【總結(jié)】第一篇:線性代數(shù)復(fù)習(xí)要點 “線性代數(shù)”主要題型(以第三版的編號為準) (注意:本復(fù)習(xí)要點所涉及的題目與考試無關(guān)) 一、具體內(nèi)容 第一章、行列式: 、四階或者五階行列式的計算。 3、例4,第...
2024-10-17 18:50
【總結(jié)】《線性代數(shù)》復(fù)習(xí)提綱第一部分:基本要求(計算方面)四階行列式的計算;N階特殊行列式的計算(如有行和、列和相等);矩陣的運算(包括加、減、數(shù)乘、乘法、轉(zhuǎn)置、逆等的混合運算);求矩陣的秩、逆(兩種方法);解矩陣方程;含參數(shù)的線性方程組解的情況的討論;齊次、非齊次線性方程組的求解(包括唯一、無窮多解);討論一個向量能否用和向量組線性表示;討論或證明向量組的相關(guān)性
2025-01-09 10:35