【總結(jié)】1、等差數(shù)列{an}前n項和公式:===。等差數(shù)列的前n項之和公式可變形為,若令A(yù)=,B=a1-,則=An2+Bn.在解決等差數(shù)列問題時,如已知,a1,an,d,,n中任意三個,可求其余兩個。2、等差數(shù)列{an}前n項和的性質(zhì)性質(zhì)1:Sn,S2n-Sn,S3n-S2n,…也在等差數(shù)列,公差為n2d性質(zhì)2:(1)若項數(shù)為偶數(shù)2n,則S2n=n(a1+a2n)=n(an
2025-04-17 07:58
【總結(jié)】等差數(shù)列前n項和公式復(fù)習(xí)回顧(1)等差數(shù)列的通項公式:已知首項a1和公差d,則有:an=a1+(n-1)d已知第m項am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2025-08-15 20:34
【總結(jié)】等差數(shù)列的前n項和數(shù)列{an}是等差數(shù)列的條件an-an-1=d等差數(shù)列{an}的通項公式an=a1+(n-1)d等差數(shù)列{an}的性質(zhì)m+n=p+qam+an=ap+aq一、數(shù)列前n項和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a1+
2024-10-09 17:27
【總結(jié)】等差數(shù)列的前n項和公式一新課引入一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?播放課件一個堆放小球的V形架問題就是“”?1004321???????這是小學(xué)時就知道的一個故事,
2024-10-09 17:22
【總結(jié)】第一篇:等差數(shù)列的前n項和教案 等差數(shù)列的前n項和 一:教材分析 本節(jié)課內(nèi)容位于高中人教版必修五第二章第三節(jié)。它是在學(xué)習(xí)了等差數(shù)列的基礎(chǔ)上來研究和討論的,是繼等差數(shù)列之后的又一重要的概念。主要利...
2024-10-23 17:55
【總結(jié)】n項和(一)故事:小王在楊春國際大酒店擔(dān)任大堂副理,月工資5000元。由于他工作業(yè)績非常好,總經(jīng)理決定給他加薪。但有兩種方案供小王選擇,方案一:一次性每年增加2022元,方案二:在現(xiàn)有工資的基礎(chǔ)上,第一個月增加20元,以后每月比上月多增加20元。小王不知如何選擇,請你幫助選一種。生活中的問題:
2025-04-29 04:01
【總結(jié)】等差數(shù)列前n項和一、目標(biāo)分析1、教學(xué)目標(biāo)依據(jù)教學(xué)大綱的教學(xué)要求,滲透新課標(biāo)理念,并結(jié)合以上學(xué)情分析,我制定了如下教學(xué)目標(biāo):●知識技能(1)掌握等差數(shù)列前n項和公式;(2)
2025-06-07 22:04
【總結(jié)】《等差數(shù)列前n項和的公式》說課稿教學(xué)目標(biāo):A、知識目標(biāo):掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。B、能力目標(biāo):(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實踐中通過觀察、嘗試、分析、類比的方
2025-08-26 11:26
【總結(jié)】等差數(shù)列及前n項和教學(xué)目標(biāo):求和公式的性質(zhì)及應(yīng)用,Sn與an的關(guān)系以及數(shù)列求和的方法。教學(xué)重點:求和公式的性質(zhì)應(yīng)用。難點:求和公式的性質(zhì)運用以及數(shù)列求和的方法引入??2n11nn-1ddS=na+d=n+a-n222??????可見d≠0時,
2025-05-12 17:19
【總結(jié)】《等差數(shù)列的前n項和》的說課稿 尊敬的各位專家、評委: 上午好! 我叫鄭永鋒,來自安慶師范學(xué)院。今天我說課的課題是人教A版必修5第二章第三節(jié)《等差數(shù)列的前n項和》。 我嘗試...
2024-12-06 01:24
【總結(jié)】第一篇:《等差數(shù)列的前n項和》說課稿 《等差數(shù)列的前n項和》 各位評委:大家好!我是----號。今天我說課的題目是《等差數(shù)列的前n項和》本節(jié)內(nèi)容選自人教版普通高中課程標(biāo)準(zhǔn)實驗教科書必修5第2章第3...
2024-10-25 04:20
【總結(jié)】等差數(shù)列前n項和的最值問題問題引入:已知數(shù)列的前n項和,?如果是,它的首項與公差分別是什么?解:當(dāng)n1時:當(dāng)n=1時:綜上:,其中:,探究1:一般地,如果一個數(shù)列的前n項和為:其中:,且p0,那么這個數(shù)列一定是等差數(shù)列嗎?如果是,它的首項和公差分別是什么?結(jié)論:當(dāng)r=0時為等差,當(dāng)r0時不是一、應(yīng)用二次函數(shù)圖象求解最值例1:等差數(shù)列中,,則n的取值為多少時
2025-03-25 06:56
【總結(jié)】欄目導(dǎo)航課前預(yù)習(xí)課堂探究點擊進(jìn)入課后作業(yè)
2025-08-05 11:00
【總結(jié)】第一篇:《等差數(shù)列的前n項和》教學(xué)設(shè)計 《等差數(shù)列的前n項和》 教學(xué)設(shè)計 教學(xué)內(nèi)容分析 本節(jié)課教學(xué)內(nèi)容是《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(5)》(人教A版)中第二章的第三節(jié)“等差數(shù)列的前n項...
2024-10-23 02:47
【總結(jié)】等差數(shù)列的前n項和性質(zhì)復(fù)習(xí):2)(1nnaanS??11(1)2nSnannd???21()22ddnan???關(guān)于n的二次函數(shù)dnaan)1(1???當(dāng)d≠0時,這是關(guān)于n的一個一次函數(shù)。n項和公式:1()dnad???595