freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

黃岡中學(xué)初中數(shù)學(xué)二次函數(shù)知識點匯總1-資料下載頁

2025-04-04 05:20本頁面
  

【正文】 2. 的性質(zhì): 結(jié)論:上加下減。同左上加,異右下減總結(jié):的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減小;時,有最小值.向下軸時,隨的增大而減?。粫r,隨的增大而增大;時,有最大值.3. 的性質(zhì):結(jié)論:左加右減。同左上加,異右下減總結(jié):的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減??;時,有最小值.向下X=h時,隨的增大而減??;時,隨的增大而增大;時,有最大值. 4. 的性質(zhì):總結(jié):的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減??;時,有最小值.向下X=h時,隨的增大而減??;時,隨的增大而增大;時,有最大值.二次函數(shù)圖象的平移 1. 平移步驟:⑴ 將拋物線解析式轉(zhuǎn)化成頂點式,確定其頂點坐標(biāo);⑵ 保持拋物線的形狀不變,將其頂點平移到處,具體平移方法如下: 2. 平移規(guī)律 在原有函數(shù)的基礎(chǔ)上“值正右移,負(fù)左移;值正上移,負(fù)下移”.概括成八個字“同左上加,異右下減”.三、二次函數(shù)與的比較請將利用配方的形式配成頂點式。請將配成??偨Y(jié):從解析式上看,與是兩種不同的表達(dá)形式,后者通過配方可以得到前者,即,其中.四、二次函數(shù)圖象的畫法五點繪圖法:利用配方法將二次函數(shù)化為頂點式,確定其開口方向、對稱軸及頂點坐標(biāo),然后在對稱軸兩側(cè),:頂點、與軸的交點、以及關(guān)于對稱軸對稱的點、與軸的交點,(若與軸沒有交點,則取兩組關(guān)于對稱軸對稱的點).畫草圖時應(yīng)抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,與軸的交點.五、二次函數(shù)的性質(zhì) 1. 當(dāng)時,拋物線開口向上,對稱軸為,頂點坐標(biāo)為.當(dāng)時,隨的增大而減?。划?dāng)時,隨的增大而增大;當(dāng)時,有最小值. 2. 當(dāng)時,拋物線開口向下,對稱軸為,頂點坐標(biāo)為.當(dāng)時,隨的增大而增大;當(dāng)時,隨的增大而減?。划?dāng)時,有最大值.六、二次函數(shù)解析式的表示方法1. 一般式:(,為常數(shù),);2. 頂點式:(,為常數(shù),);3. 兩根式:(,是拋物線與軸兩交點的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點式,但并非所有的二次函數(shù)都可以寫成交點式,只有拋物線與軸有交點,即時,拋物線的解析式才可以用交點式表示.二次函數(shù)解析式的這三種形式可以互化.七、二次函數(shù)的圖象與各項系數(shù)之間的關(guān)系 1. 二次項系數(shù)二次函數(shù)中,作為二次項系數(shù),顯然. ⑴ 當(dāng)時,拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大; ⑵ 當(dāng)時,拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大.總結(jié)起來,決定了拋物線開口的大小和方向,的正負(fù)決定開口方向,的大小決定開口的大?。?. 一次項系數(shù) 在二次項系數(shù)確定的前提下,決定了拋物線的對稱軸. ⑴ 在的前提下,當(dāng)時,即拋物線的對稱軸在軸左側(cè);ab同號同左上加當(dāng)時,即拋物線的對稱軸就是軸;當(dāng)時,即拋物線對稱軸在軸的右側(cè).a(chǎn),b異號異右下減⑵ 在的前提下,結(jié)論剛好與上述相反,即當(dāng)時,即拋物線的對稱軸在軸右側(cè);a,b異號異右下減當(dāng)時,即拋物線的對稱軸就是軸;當(dāng)時,即拋物線對稱軸在軸的左側(cè).a(chǎn)b同號同左上加總結(jié)起來,在確定的前提下,決定了拋物線對稱軸的位置.總結(jié): 同左上加 異右下減 3. 常數(shù)項 ⑴ 當(dāng)時,拋物線與軸的交點在軸上方,即拋物線與軸交點的縱坐標(biāo)為正; ⑵ 當(dāng)時,拋物線與軸的交點為坐標(biāo)原點,即拋物線與軸交點的縱坐標(biāo)為; ⑶ 當(dāng)時,拋物線與軸的交點在軸下方,即拋物線與軸交點的縱坐標(biāo)為負(fù). 總結(jié)起來,決定了拋物線與軸交點的位置. 總之,只要都確定,那么這條拋物線就是唯一確定的.二次函數(shù)解析式的確定:根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點,選擇適當(dāng)?shù)男问剑拍苁菇忸}簡便.一般來說,有如下幾種情況:1. 已知拋物線上三點的坐標(biāo),一般選用一般式;2. 已知拋物線頂點或?qū)ΨQ軸或最大(?。┲?,一般選用頂點式;3. 已知拋物線與軸的兩個交點的橫坐標(biāo),一般選用兩根式;4. 已知拋物線上縱坐標(biāo)相同的兩點,常選用頂點式.二、二次函數(shù)圖象的對稱 二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點式表達(dá) 1. 關(guān)于軸對稱 關(guān)于軸對稱后,得到的解析式是; 關(guān)于軸對稱后,得到的解析式是; 2. 關(guān)于軸對稱 關(guān)于軸對稱后,得到的解析式是; 關(guān)于軸對稱后,得到的解析式是; 3. 關(guān)于原點對稱 關(guān)于原點對稱后,得到的解析式是; 關(guān)于原點對稱后,得到的解析式是; 4. 關(guān)于頂點對稱 關(guān)于頂點對稱后,得到的解析式是;關(guān)于頂點對稱后,得到的解析式是.5. 關(guān)于點對稱 關(guān)于點對稱后,得到的解析式是 根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此永遠(yuǎn)不變.求拋物線的對稱拋物線的表達(dá)式時,可以依據(jù)題意或方便運算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點坐標(biāo)及開口方向,再確定其對稱拋物線的頂點坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達(dá)式.二次函數(shù)與一元二次方程:1. 二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與軸交點情況):一元二次方程是二次函數(shù)當(dāng)函數(shù)值時的特殊情況.圖象與軸的交點個數(shù):① 當(dāng)時,圖象與軸交于兩點,其中的是一元二次方程的兩根.這兩點間的距離. ② 當(dāng)時,圖象與軸只有一個交點; ③ 當(dāng)時,圖象與軸沒有交點. 當(dāng)時,圖象落在軸的上方,無論為任何實數(shù),都有; 當(dāng)時,圖象落在軸的下方,無論為任何實數(shù),都有. 2. 拋物線的圖象與軸一定相交,交點坐標(biāo)為,; 3. 二次函數(shù)常用解題方法總結(jié):⑴ 求二次函數(shù)的圖象與軸的交點坐標(biāo),需轉(zhuǎn)化為一元二次方程;⑵ 求二次函數(shù)的最大(?。┲敌枰门浞椒▽⒍魏瘮?shù)由一般式轉(zhuǎn)化為頂點式;⑶ 根據(jù)圖象的位置判斷二次函數(shù)中,的符號,或由二次函數(shù)中,的符號判斷圖象的位置,要數(shù)形結(jié)合;⑷ 二次函數(shù)的圖象關(guān)于對稱軸對稱,可利用這一性質(zhì),求和已知一點對稱的點坐標(biāo),或已知與軸的一個交點坐標(biāo),可由對稱性求出另一個交點坐標(biāo).拋物線與軸有兩個交點二次三項式的值可正、可零、可負(fù)一元二次方程有兩個不相等實根拋物線與軸只有一個交點二次三項式的值為非負(fù)一元二次方程有兩個相等的實數(shù)根拋物線與軸無交點二次三項式的值恒為正一元二次方程無實數(shù)根.⑸ 與二次函數(shù)有關(guān)的還有二次三項式,二次三項式本身就是所含字母的二次函數(shù);下面以時為例,揭示二次函數(shù)、二次三項式和一元二次方程之間的內(nèi)在聯(lián)系:圖像參考: 24
點擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1