freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學思維校本課程-資料下載頁

2025-04-04 05:12本頁面
  

【正文】 知識,才能反思性地看問題。例2 證明勾股定理:已知在中,求證錯誤證法 在中,而,即錯誤分析 在現(xiàn)行的中學體系中,這個公式本身是從勾股定理推出來的。這種利用所要證明的結論,作為推理的前提條件,叫循環(huán)論證。循環(huán)論證的錯誤是在不知不覺中產(chǎn)生的,而且不易發(fā)覺。因此,在學習中對所學的每個公式、法則、定理,既要熟悉它們的內(nèi)容,又要熟悉它們的證明方法和所依據(jù)的論據(jù)。這樣才能避免循環(huán)論證的錯誤。發(fā)現(xiàn)本題犯了循環(huán)論證的錯誤,正是思維具有反思性的體現(xiàn)。(2) 驗算的訓練驗算是解題后對結果進行檢驗的過程。通過驗算,可以檢查解題過程的正確性,增強思維的反思性。例3 已知數(shù)列的前項和,求錯誤解法 錯誤分析 顯然,當時,錯誤原因,沒有注意公式成立的條件是因此在運用時,必須檢驗時的情形。即:例4 實數(shù)為何值時,圓與拋物線有兩個公共點。錯誤解法 將圓與拋物線 聯(lián)立,消去,得 ①因為有兩個公共點,所以方程①有兩個相等正根,得 解之,得錯誤分析 (如圖2-2-1;2-2-2)顯然,當時,圓與拋物線有兩個公共點。xyO圖2-2-2xyO圖2-2-1要使圓與拋物線有兩個交點的充要條件是方程①有一正根、一負根;或有兩個相等正根。當方程①有一正根、一負根時,得解之,得因此,當或時,圓與拋物線有兩個公共點。思考題:實數(shù)為何值時,圓與拋物線,(1) 有一個公共點;(2) 有三個公共點;(3) 有四個公共點;(4) 沒有公共點。養(yǎng)成驗算的習慣,可以有效地增強思維反思性。如:在解無理方程、無理不等式;對數(shù)方程、對數(shù)不等式時,由于變形后方程或不等式兩端代數(shù)式的定義域可能會發(fā)生變化,這樣就有可能產(chǎn)生增根或失根,因此必須進行檢驗,舍棄增根,找回失根。(3) 獨立思考,敢于發(fā)表不同見解受思維定勢或別人提示的影響,解題時盲目附和,不能提出自己的看法,這不利于增強思維的反思性。因此,在解決問題時,應積極地獨立思考,敢于對題目解法發(fā)表自己的見解,這樣才能增強思維的反思性,從而培養(yǎng)創(chuàng)造性思維。例5 解方程考察方程兩端相應的函數(shù),它們的圖象無交點。所以此方程無解。例6 設是方程的兩個實根,則的最小值是( )思路分析 本例只有一個答案正確,設了3個陷阱,很容易上當。利用一元二次方程根與系數(shù)的關系易得:有的學生一看到,常受選擇答案(A)的誘惑,盲從附和。這正是思維缺乏反思性的體現(xiàn)。如果能以反思性的態(tài)度考察各個選擇答案的來源和它們之間的區(qū)別,就能從中選出正確答案。 原方程有兩個實根,當時,的最小值是8;當時,的最小值是18;這時就可以作出正確選擇,只有(B)正確。
點擊復制文檔內(nèi)容
數(shù)學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1