freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

(最新版)北師大版初中數(shù)學(xué)各冊章節(jié)知識點總結(jié)-資料下載頁

2025-04-04 02:41本頁面
  

【正文】 形的定義兩腰相等的梯形叫做等腰梯形。等腰梯形的性質(zhì)(1)等腰梯形的兩腰相等,兩底平行。(2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補(bǔ)。(3)等腰梯形的對角線相等。(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。等腰梯形的判定(1)定義:兩腰相等的梯形是等腰梯形(2)定理:在同一底上的兩個角相等的梯形是等腰梯形(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)(四)梯形的面積(1)如圖,(2)梯形中有關(guān)圖形的面積:①;②;③七、有關(guān)中點四邊形問題的知識點:(1)順次連接任意四邊形的四邊中點所得的四邊形是平行四邊形;(2)順次連接矩形的四邊中點所得的四邊形是菱形;(3)順次連接菱形的四邊中點所得的四邊形是矩形;(4)順次連接等腰梯形的四邊中點所得的四邊形是菱形;(5)順次連接對角線相等的四邊形四邊中點所得的四邊形是菱形;(6)順次連接對角線互相垂直的四邊形四邊中點所得的四邊形是矩形;(7)順次連接對角線互相垂直且相等的四邊形四邊中點所得的四邊形是正方形;八、中心對稱圖形 定義在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180176。,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。性質(zhì)(1)關(guān)于中心對稱的兩個圖形是全等形。(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。(3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。判定如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關(guān)系第五章 位置的確定一、 在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。二、平面直角坐標(biāo)系及有關(guān)概念 平面直角坐標(biāo)系在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點O稱為直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。注意:x軸和y軸上的點(坐標(biāo)軸上的點),不屬于任何一個象限。點的坐標(biāo)的概念對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點P的坐標(biāo)。點的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)時,(a,b)和(b,a)是兩個不同點的坐標(biāo)。平面內(nèi)點的與有序?qū)崝?shù)對是一一對應(yīng)的。不同位置的點的坐標(biāo)的特征 (1)、各象限內(nèi)點的坐標(biāo)的特征 點P(x,y)在第一象限點P(x,y)在第二象限點P(x,y)在第三象限點P(x,y)在第四象限(2)、坐標(biāo)軸上的點的特征點P(x,y)在x軸上,x為任意實數(shù)點P(x,y)在y軸上,y為任意實數(shù)點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標(biāo)為(0,0)即原點(3)、兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征點P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)(4)、和坐標(biāo)軸平行的直線上點的坐標(biāo)的特征位于平行于x軸的直線上的各點的縱坐標(biāo)相同。位于平行于y軸的直線上的各點的橫坐標(biāo)相同。(5)、關(guān)于x軸、y軸或原點對稱的點的坐標(biāo)的特征點P與點p’關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點P(x,y)關(guān)于x軸的對稱點為P’(x,y)點P與點p’關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點P(x,y)關(guān)于y軸的對稱點為P’(x,y)點P與點p’關(guān)于原點對稱橫、縱坐標(biāo)均互為相反數(shù),即點P(x,y)關(guān)于原點的對稱點為P’(x,y)(6)、點到坐標(biāo)軸及原點的距離點P(x,y)到坐標(biāo)軸及原點的距離:(1)點P(x,y)到x軸的距離等于(2)點P(x,y)到y(tǒng)軸的距離等于(3)點P(x,y)到原點的距離等于三、坐標(biāo)變化與圖形變化的規(guī)律:坐標(biāo)( x , y )的變化 圖形的變化 x a或 y a 被橫向或縱向拉長(壓縮)為原來的 a倍 x a, y a 放大(縮?。樵瓉淼?a倍 x ( 1)或 y ( 1) 關(guān)于 y 軸或 x 軸對稱 x ( 1), y ( 1) 關(guān)于原點成中心對稱 x +a或 y+ a 沿 x 軸或 y 軸平移 a個單位 x +a, y+ a 沿 x 軸平移 a個單位,再沿 y 軸平移 a個單第六章 一次函數(shù)一、函數(shù):一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。二、自變量取值范圍使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實際意義幾方面考慮。三、函數(shù)的三種表示法及其優(yōu)缺點(1)關(guān)系式(解析)法兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。(2)列表法把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。(3)圖象法用圖象表示函數(shù)關(guān)系的方法叫做圖象法。四、由函數(shù)關(guān)系式畫其圖像的一般步驟(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值(2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。五、正比例函數(shù)和一次函數(shù) 正比例函數(shù)和一次函數(shù)的概念一般地,若兩個變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。一次函數(shù)的圖像: 所有一次函數(shù)的圖像都是一條直線一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。k的符號b的符號函數(shù)圖像圖像特征k0b0 y 0 x圖像經(jīng)過一、二、三象限,y隨x的增大而增大。b0 y 0 x圖像經(jīng)過一、三、四象限,y隨x的增大而增大。K0b0 y 0 x 圖像經(jīng)過一、二、四象限,y隨x的增大而減小b0 y 0 x 圖像經(jīng)過二、三、四象限,y隨x的增大而減小。注:當(dāng)b=0時,一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。正比例函數(shù)的性質(zhì)一般地,正比例函數(shù)有下列性質(zhì):(1)當(dāng)k0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;(2)當(dāng)k0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。一次函數(shù)的性質(zhì)一般地,一次函數(shù)有下列性質(zhì):(1)當(dāng)k0時,y隨x的增大而增大(2)當(dāng)k0時,y隨x的增大而減小正比例函數(shù)和一次函數(shù)解析式的確定確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。一次函數(shù)與一元一次方程的關(guān)系: 任何一個一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式. 而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0).當(dāng)函數(shù)值為0時,即kx+b=0就與一元一次方程完全相同. 結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式.所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時,求相應(yīng)的自變量的值.從圖象上看,這相當(dāng)于已知直線y=kx+b確定它與x軸交點的橫坐標(biāo)值.第七章 二元一次方程組二元一次方程含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。二元一次方程的解適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。4二元一次方程組的解二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。二元一次方程組的解法(1)代入(消元)法(2)加減(消元)法一次函數(shù)與二元一次方程(組)的關(guān)系:(1)一次函數(shù)與二元一次方程的關(guān)系:直線y=k x+b上任意一點的坐標(biāo)都是它所對應(yīng)的二元一次方程k x y+b=0的解(2)一次函數(shù)與二元一次方程組的關(guān)系:二元一次方程組 的解可看作兩個一次函數(shù) 和 的圖象的交點。當(dāng)函數(shù)圖象有交點時,說明相應(yīng)的二元一次方程組有解;當(dāng)函數(shù)圖象(直線)平行即無交點時,說明相應(yīng)的二元一次方程組無解。第八章 數(shù)據(jù)的代表刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù) 、眾數(shù)、中位數(shù) 平均數(shù)(1)平均數(shù):一般地,對于n個數(shù)我們把叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù),記為。(2)加權(quán)平均數(shù): 眾數(shù)一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。中位數(shù)一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。北師大版初中數(shù)學(xué)八年級(下冊)各章知識點第一章 一元一次不等式和一元一次不等式組一、一般地,用符號“<”(或“≤”),“>”(或“≥”)連接的式子叫做不等式。能使不等式成立的未知數(shù)的值,叫做不等式的解. 不等式的解不唯一,把所有滿足不等式的解集合在一起,構(gòu)成不等式的解集. 求不等式解集的過程叫解不等式.由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組不等式組的解集 :一元一次不等式組各個不等式的解集的公共部分。等式基本性質(zhì)1:在等式的兩邊都加上(或減去)同一個數(shù)或整式,所得的結(jié)果仍是等式. 基本性質(zhì)2:在等式的兩邊都乘以或除以同一個數(shù)(除數(shù)不為0),所得的結(jié)果仍是等式.二、不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變. (注:移項要變號,但不等號不變。)性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變.不等式的基本性質(zhì)若ab, 則acbc;若ab, c0 則acb c,若c0, 則acb c 不等式的其他性質(zhì):反射性:若ab,則ba。 傳遞性:若ab,且bc,則ac三、解不等式的步驟: 去分母。 去括號。 移項、合并同類項。 系數(shù)化為1。 四、解不等式組的步驟:解出不等式的解集。 在同一數(shù)軸表示不等式的解集。 寫出不等式組的解集。 五、列一元一次不等式組解實際問題的一般步驟:(1) 審題; (2)設(shè)未知數(shù),找(不等量)關(guān)系式;(3)設(shè)元,(根據(jù)不等量)關(guān)系式列不等式(組) (4)解不等式組;檢驗并作答。六、常考題型: 求4x67x12的非負(fù)數(shù)解. 已知3(xa)=xa+1的解適合2(x5) 8a,求a的范圍.當(dāng)m取何值時,3x+m2(m+2)=3m+x的解在5和5之間。 第二章 分解因式一、公式:ma+mb+mc=m(a+b+c) 二、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。 把幾個整式的積化成一個多項式的形式,是乘法運算.把一個多項式化成幾個整式的積的形式,是因式分解.ma+mb+mc=m(a+b+c)因式分解與整式乘法是相反方向的變形。三、把多項式的各項都含有的相同因式,叫做這個多項式的各項的公因式.提公因式法分解因式就是把一個多項式化成單項式與多項式相乘的形式. 找公因式的一般步驟:(1)若各項系數(shù)是整系數(shù),取系數(shù)的最大公約數(shù);(2)取相同的字母,字母的指數(shù)取較低的;(3)取相同的多項式,多項式的指數(shù)取較低的.(4)所有這些因式的乘積即為公因式.四、分解因式的一般步驟為:(1)若有“”先提取“”,若多項式各項有公因式,
點擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1