【總結(jié)】基本不等式一.基本不等式①公式:,常用②升級版:選擇順序:考試中,優(yōu)先選擇原公式,其次是升級版二.考試題型【題型1】 基本不等式求最值求最值使用原則:一正二定三相等一正:指的是注意范圍為正數(shù)。二定:指的是是定值為常數(shù)三相等:指的是取到最值時(shí)典型例題:例1.求的值域分析:范圍為負(fù),提負(fù)號(或使用對鉤函數(shù)圖像處理)解:
2025-03-25 00:14
【總結(jié)】基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號考生,今天我說課...
2025-11-28 02:50
【總結(jié)】高考基本不等式專題典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個(gè)和為定值,可考慮把括號內(nèi)外x的系數(shù)變成互為相反數(shù);(2)中,未指出x>0,因而不能直接使用基本不等式,需分x>0與x<0討論.(1)解法一:∵0<x<,∴1-3x>0.∴y=x(1-3x)=·3x(1-3
2025-03-25 02:05
【總結(jié)】......《不等式》的說課稿各位領(lǐng)導(dǎo)、老師們大家好:今天我說課的內(nèi)容是北師版數(shù)學(xué)高中教材必修五第三章第一二三節(jié),我將從八個(gè)方面(教材、學(xué)情、教學(xué)模式、教學(xué)設(shè)計(jì)、板書、評價(jià)、開發(fā)、得失,出示ppt)說我對此課的思考和
2025-04-17 00:22
【總結(jié)】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當(dāng)且僅當(dāng)時(shí)取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-05 19:27
【總結(jié)】基本不等式的應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)
2025-08-05 04:58
【總結(jié)】第一篇:基本不等式教案 基本不等式 【教學(xué)目標(biāo)】 1、掌握基本不等式,能正確應(yīng)用基本不等式的方法解決最值問題 2、用易錯(cuò)問題引入要研究的課題,通過實(shí)踐讓同學(xué)對基本不等式應(yīng)用的二個(gè)條件有進(jìn)一步的...
2025-10-19 11:37
【總結(jié)】基本不等式學(xué)習(xí)目標(biāo)?學(xué)習(xí)目標(biāo):理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合。”的觀念。掌握一元二次不等式的解法及步驟。?學(xué)習(xí)重點(diǎn)、難點(diǎn):一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2025-11-14 11:40
【總結(jié)】2abab??§:ICM2022會標(biāo)趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對于任意實(shí)數(shù)a、b,我們有當(dāng)且僅當(dāng)a=b時(shí),等號成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2025-08-04 15:14
【總結(jié)】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;(小)值問題.;能夠解決一些簡單的實(shí)際問題【知識網(wǎng)絡(luò)】基本不等式重要不等式最大(?。┲祮栴}基本不等式基本不等式的應(yīng)用【考點(diǎn)梳理】考點(diǎn)一:重要不等式及幾何意義1.重要不等式:如果,那么(當(dāng)且僅當(dāng)時(shí)取等號“=”).2.基
2025-08-05 04:42
【總結(jié)】......基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,
2025-05-13 23:12
【總結(jié)】......基本不等式提高題1.已知直線l1:a2x+y+2=0與直線l2:bx﹣(a2+1)y﹣1=0互相垂直,則|ab|的最小值為( ?。.5B.4C.2D.12.已知a>0,b>1且
【總結(jié)】......《基本不等式》說課稿各位老師大家好,我選擇的課題是人教A版必修5第三章第四節(jié)《基本不等式》第一課時(shí)。下面我將圍繞“教什么”,“怎么教”,“為什么這么教”這三個(gè)問題從以下六個(gè)方面來闡述我對教材的理解與教學(xué)設(shè)計(jì)。(一、教
【總結(jié)】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2025-10-19 23:35
【總結(jié)】新課標(biāo)人教A版高中數(shù)學(xué)必修五典題精講()典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個(gè)和為定值,可考慮把括號內(nèi)外x的系數(shù)變成互為相反數(shù);(2)中,未指出x>0,因而不能直接使用基本不等式,需分x>0與x<0討論.(1)解法一:∵0<x<,∴1-3x>0.∴y=x(1-3x)=&