【總結(jié)】知識(shí)點(diǎn)梳理1.勾股定理內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么 勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法 用拼圖的方法驗(yàn)證勾股定理的思路是①圖形進(jìn)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見(jiàn)方法如下:方法一:,,化簡(jiǎn)可證
2025-03-24 12:58
【總結(jié)】初中數(shù)學(xué)競(jìng)賽專(zhuān)題輔導(dǎo)勾股定理與應(yīng)用 在課內(nèi)我們學(xué)過(guò)了勾股定理及它的逆定理. 勾股定理直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2. 勾股定理逆定理如果三角形三邊長(zhǎng)a,b,c有下面關(guān)系:a2+b2=c2 那么這個(gè)三角形是直角三角形. 早在3000年前,我國(guó)已有“勾廣三,股修四,徑陽(yáng)五”的說(shuō)法. 關(guān)于勾股定理,有很多證法,
2025-04-04 03:49
【總結(jié)】勾股定理的逆定理》教學(xué)設(shè)計(jì)邢臺(tái)縣晏家屯中學(xué)徐立萍學(xué)習(xí)目標(biāo)1.理解勾股定理的逆定理的證明方法和證明過(guò)程;2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角教學(xué)重難點(diǎn)勾股定理的逆定理及其應(yīng)用.勾股定理的逆定理的證
2025-01-07 14:03
【總結(jié)】勾股定理的逆定理一、說(shuō)教材(一)教材分析本節(jié)內(nèi)容選自《人教版》義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)八年級(jí)下冊(cè)第十八章《勾股定理》中的第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算
2025-05-12 05:16
【總結(jié)】勾股定理的逆定理說(shuō)課稿 勾股定理的逆定理說(shuō)課稿1各位考官,大家好,我是X號(hào)考生,今天我說(shuō)課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開(kāi)展我的說(shuō)課,首先...
2024-12-06 22:46
【總結(jié)】勾股定理及其逆定理一、知識(shí)點(diǎn)1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)2、勾股定理的逆定理:如果三角形的三邊長(zhǎng):a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。3、滿(mǎn)足的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。二、典型題型1、求線(xiàn)段的長(zhǎng)度題型2、判斷直角三角形題型3、求最短距離三、主要數(shù)學(xué)思想和方法(1
2025-06-22 04:05
【總結(jié)】勾股定理的逆定理第十七章勾股定理第1課時(shí)一、情境引入?據(jù)說(shuō),幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個(gè)結(jié),然后,用釘子將第1個(gè)與第13個(gè)結(jié)釘在一起,拉緊繩子,再在第4個(gè)和第8個(gè)結(jié)處各釘上一個(gè)釘子,如圖。這樣圍成的三角形中,最長(zhǎng)邊所對(duì)的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【總結(jié)】勾股定理的逆定理人教版數(shù)學(xué)八年級(jí)下冊(cè).重點(diǎn)、互逆定理難點(diǎn)3.能靈活運(yùn)用勾股定理的逆定理解決實(shí)際問(wèn)題.重點(diǎn)學(xué)習(xí)目標(biāo)(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【總結(jié)】第一篇:勾股定理逆定理說(shuō)課稿 勾股定理的逆定理說(shuō)課稿 一、教材分析 (一)、本節(jié)課在教材中的地位作用 “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它...
2024-11-04 17:50
【總結(jié)】勾股定理單元復(fù)習(xí)一、知識(shí)要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說(shuō):如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長(zhǎng)分別是a,b,c,且滿(mǎn)足a2+b2=c2,那么三角形ABC是直角三角形。這個(gè)定理叫
2025-04-16 23:53
【總結(jié)】宜昌市邁克學(xué)習(xí)能力培訓(xùn)學(xué)校業(yè)精于勤荒于嬉勾股定理知識(shí)點(diǎn)匯總1、基礎(chǔ)知識(shí)點(diǎn):1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么 勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法 用拼圖的方法驗(yàn)證勾股定理的思路是①圖形進(jìn)過(guò)割補(bǔ)拼接后,
【總結(jié)】勾股定理1:勾股定理2、勾股逆定理3:勾股定理的證明 勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法,用拼圖的方法驗(yàn)證勾股定理的思路是①圖形經(jīng)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見(jiàn)方法如下:方法一:,,化簡(jiǎn)可證.方法二:四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積
2025-03-24 13:01
【總結(jié)】勾股定理年級(jí):初二科目:數(shù)學(xué)時(shí)間:9/21/202118:43:57用四個(gè)全等直角三角形拼成的是三國(guó)時(shí)期數(shù)學(xué)家趙爽驗(yàn)證勾股定理時(shí)所用的"眩圖',你能用它驗(yàn)證C2=A2+B2嗎?把你的驗(yàn)證過(guò)程寫(xiě)出來(lái).勾股定理的證明,自古以來(lái)引起人們的極大興趣,其證法至今已約有四百種之多,是幾何定理中證法最多的一個(gè)。若將這些證法搜集
2024-12-08 05:40
【總結(jié)】趣話(huà)勾股定理1955年希臘發(fā)行了一張郵票,圖案是由三個(gè)棋盤(pán)排列而成.這張郵票是紀(jì)念二千五百年前希臘的一個(gè)學(xué)派和宗教團(tuán)體——畢達(dá)哥拉斯學(xué)派,它的成立以及在文化上的貢獻(xiàn).郵票上的圖案是對(duì)數(shù)學(xué)上一個(gè)非常重要定理的說(shuō)明,它是初等幾何中最精彩的,也是最著名和最有用的定理.在我國(guó),人們稱(chēng)它為勾股定理或商高定理;在歐洲,人們稱(chēng)它為畢達(dá)哥拉斯定理.勾股定理
2024-12-07 21:44
【總結(jié)】初中數(shù)學(xué)優(yōu)秀說(shuō)課稿模板《研究勾股定理》一、教材分析(一)教材所處的地位這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理
2025-08-14 12:47