【總結(jié)】上頁(yè)下頁(yè)返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問(wèn)題的提出二、微分方程的定義三、主要問(wèn)題—求方程的解四、小結(jié)思考題第五章常微分方程上頁(yè)下頁(yè)返回結(jié)束2022/3/132例1一曲線通過(guò)點(diǎn)(1,2),
2025-02-21 12:49
【總結(jié)】數(shù)學(xué)實(shí)驗(yàn)報(bào)告1.題目:某容器盛滿水后,底端直徑為d0的小孔開(kāi)啟(如圖1),根據(jù)水力學(xué)知識(shí),當(dāng)水面高度為h時(shí),誰(shuí)從小孔中流出的速度為v=*(g*h)^(其中g(shù)為重力加速度,)1)若容器為倒圓錐形(如圖1),,小孔直徑d為3cm,為水從小孔中流完需要多少時(shí)間;2min時(shí)水面高度是多少。2)若容器為倒葫蘆形(如圖2),,小孔直徑d為3cm,由底端(記x=0)(
2025-01-16 17:00
【總結(jié)】本科生實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)課程微分方程數(shù)值解學(xué)院名稱管理科學(xué)學(xué)院專業(yè)名稱信息與計(jì)算科學(xué)學(xué)生姓名學(xué)生學(xué)號(hào)指導(dǎo)教師林紅霞實(shí)驗(yàn)地點(diǎn)6C402實(shí)驗(yàn)成績(jī)二〇一五年十月二〇一五年十一月填寫(xiě)說(shuō)明1、適用于本科生所有的實(shí)驗(yàn)報(bào)告(印制實(shí)驗(yàn)報(bào)告冊(cè)除外);2、專業(yè)填寫(xiě)為專業(yè)全
2025-06-23 00:43
【總結(jié)】數(shù)值分析第8章數(shù)值積分與數(shù)值微分填空題(1)n+1個(gè)點(diǎn)的插值型數(shù)值積分公式abf(x)dx≈j=0nAjf(xj)的代數(shù)精度至少是n,最高不超過(guò)2n+1?!咀ⅲ旱?空,】(2)梯形公式有1次代數(shù)精度,Simpson公司有3次代數(shù)精度?!咀ⅲ?】(3)求積公式0hf(x)dx≈h2f0+fh+ah2f'0-f'(h)中的參數(shù)a=1/
2025-06-24 21:25
【總結(jié)】第5章微分方程一、內(nèi)容精要(一)主要定義微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)的最高階數(shù)叫做微分方程的階,本光盤(pán)只限討論常微分方程.含有自變量、未知函數(shù)以及未知函數(shù)的導(dǎo)數(shù)或微分的方程叫做微分方程;未知
2025-01-19 14:35
【總結(jié)】常微分方程的基本概念可分離變量的微分方程一階微分方程與可降階的高階微分方程二階常系數(shù)微分方程常微分方程的應(yīng)用舉例第9章常微分方程結(jié)束前頁(yè)結(jié)束后頁(yè)含有未知函數(shù)的導(dǎo)數(shù)(或微分)的方程稱為微分方程。定義一常微分方程的基
2025-01-19 07:39
【總結(jié)】微分方程數(shù)值解課程設(shè)計(jì)報(bào)告班級(jí):______________姓名:_________學(xué)號(hào):___________成績(jī):2017年6月21日目錄一、摘要 1二、常微分方程數(shù)值解 24階Runge-Kutta法
2025-04-16 23:19
【總結(jié)】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-16 21:13
【總結(jié)】第8章偏微分方程數(shù)值解一、典型的偏微分方程介紹1.橢圓型方程:在研究有熱源穩(wěn)定狀態(tài)下的熱傳導(dǎo),有固定外力作用下薄膜的平衡問(wèn)題時(shí),都會(huì)遇到Poisson方程Dyxyxfyuxu???????),(),(222202222??????yuxu
2025-08-05 11:00
【總結(jié)】課程設(shè)計(jì)說(shuō)明書(shū)課程名稱:數(shù)值計(jì)算與算法設(shè)計(jì)課程設(shè)計(jì)題目:導(dǎo)彈追蹤微分方程模型的數(shù)值解法院系:理學(xué)院_專業(yè)班級(jí):_應(yīng)用數(shù)學(xué)2005-2學(xué)號(hào):_200513794_學(xué)生姓名:__儲(chǔ)素霞__指導(dǎo)教師:__許峰___2008年7月11日安徽理工大學(xué)課程
2025-01-16 14:12
【總結(jié)】課程設(shè)計(jì)說(shuō)明書(shū)(論文)第I頁(yè)常微分方程組初值問(wèn)題數(shù)值解的實(shí)現(xiàn)和算法分析摘要本次課程設(shè)計(jì)主要內(nèi)容是用改進(jìn)Euler方法和四階Runge-Kutta方法解決常微分方程組初值問(wèn)題的數(shù)值解法,通過(guò)分析給定題目使用Matlab編寫(xiě)程序計(jì)算結(jié)果并繪圖然后區(qū)別兩種方法
2025-01-11 03:32
【總結(jié)】[原創(chuàng)]偏微分方程數(shù)值解法的MATLAB源碼【更新完畢】說(shuō)明:由于偏微分的程序都比較長(zhǎng),比其他的算法稍復(fù)雜一些,所以另開(kāi)一貼,專門(mén)上傳偏微分的程序謝謝大家的支持!其他的數(shù)值算法見(jiàn):..//Announce/?BoardID=209&id=82450041、古典顯式格式求解拋物型偏微分方程(一維熱傳導(dǎo)方程)function[Uxt]=PDEPara
2025-06-19 22:12
【總結(jié)】課程設(shè)計(jì)說(shuō)明書(shū)課程名稱:數(shù)值計(jì)算與算法設(shè)計(jì)課程設(shè)計(jì)題目:導(dǎo)彈追蹤微分方程模型的數(shù)值解法院系:理學(xué)院_專業(yè)班級(jí):_應(yīng)用數(shù)學(xué)2021-2學(xué)號(hào):_202113794_學(xué)生姓名:__儲(chǔ)素霞__指導(dǎo)教師:__許
2025-06-07 13:47
【總結(jié)】殘量?離散的最佳逼近問(wèn)題問(wèn)題的提法:ix()ifx2x1mx?mx1x1()fx2()fx1()mfx?()mfx已知在的函數(shù)表()fx[,]ab??0()njjx??是區(qū)間上的一個(gè)線性無(wú)關(guān)函數(shù)系[,]ab尋求函數(shù)0()()njj
2025-03-21 22:16
【總結(jié)】本科生課程設(shè)計(jì)報(bào)告實(shí)習(xí)課程數(shù)值分析學(xué)院名稱管理科學(xué)學(xué)院專業(yè)名稱信息與計(jì)算科學(xué)學(xué)生姓名學(xué)生學(xué)號(hào)指導(dǎo)教師實(shí)驗(yàn)地點(diǎn)實(shí)驗(yàn)成績(jī)二〇一六年六月二〇一六年六摘要,實(shí)用上許多很有價(jià)值的常微分方程的解不能用初等函數(shù)來(lái)表示,,.?關(guān)鍵詞:數(shù)值解法
2025-06-18 04:39