【總結(jié)】概率論隨機(jī)變量相互獨(dú)立的定義例題二維隨機(jī)變量的推廣§4相互獨(dú)立的隨機(jī)變量概率論兩事件A,B獨(dú)立的定義是:若P(AB)=P(A)P(B)則稱事件A,B獨(dú)立.設(shè)X,Y是兩個(gè),若對任意的x,y,有)()(),(yYPxXPyYxXP?????則稱X和Y相互
2025-05-14 23:56
【總結(jié)】某商場為滿足市場需求要將單價(jià)分別為18元/kg,24元/kg,36元/kg的3種糖果按3:2:1的比例混合銷售,其中混合糖果中每一顆糖果的質(zhì)量都相等,如何對混合糖果定價(jià)才合理?2618+24+363?定價(jià)為可以嗎?18×1/2+24×1/3+36×1/6
2024-11-10 02:15
【總結(jié)】§5兩個(gè)隨機(jī)變量的函數(shù)的分布第三章多維隨機(jī)變量及其分布1/15隨機(jī)變量的函數(shù)的分布隨機(jī)變量函數(shù)的取值范圍會(huì)求兩個(gè)隨機(jī)變量的和、商、最大及最小值的分布§5兩個(gè)隨機(jī)變量的函數(shù)的分布第三章多維隨機(jī)變量及其分布2/15設(shè)有兩個(gè)部件、其工作壽命分別為III,
2025-08-01 14:25
【總結(jié)】三、多維隨機(jī)變量及其分布隨機(jī)變量隨機(jī)變量的分布函數(shù)的概念及性質(zhì)離散型隨機(jī)變量的概率分布連續(xù)型隨機(jī)變量的概率密度常見隨機(jī)變量的分布隨機(jī)變量函數(shù)的分布考試內(nèi)容設(shè)X1,X2,…,Xn為定義在同一樣本空間上的隨機(jī)變量,則稱這n個(gè)隨機(jī)變量的整體(X1,X2,…,Xn)為n維隨機(jī)變量(或
2025-07-17 23:42
【總結(jié)】四、隨機(jī)變量的數(shù)字特征考試內(nèi)容(一)隨機(jī)變量的數(shù)學(xué)期望(均值)設(shè)X的分布律為?,2,1,)(???ipxXPii(級數(shù)絕對收斂)?kkkpx?kkkpx?)(XE則設(shè)連續(xù)型隨機(jī)變量X的密度函數(shù)為f(x),則??????dxxxfXE)()((
2025-07-18 17:03
【總結(jié)】1高二數(shù)學(xué)選修2-32復(fù)習(xí)引入:1、什么是隨機(jī)事件?什么是基本事件?在一定條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機(jī)事件。試驗(yàn)的每一個(gè)可能的結(jié)果稱為基本事件。2、什么是隨機(jī)試驗(yàn)?凡是對現(xiàn)象或?yàn)榇硕M(jìn)行的實(shí)驗(yàn),都稱之為試驗(yàn)。如果試驗(yàn)具有下述特點(diǎn):試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;每次試驗(yàn)的所有可
2025-08-04 18:34
【總結(jié)】§4相互獨(dú)立的隨機(jī)變量第三章多維隨機(jī)變量及其分布1/18隨機(jī)變量的獨(dú)立性離散型、連續(xù)型隨機(jī)變量的獨(dú)立性的判斷利用隨機(jī)變量的獨(dú)立性進(jìn)行相關(guān)概率的計(jì)算§4相互獨(dú)立的隨機(jī)變量第三章多維隨機(jī)變量及其分布2/18()()()PABPAPB?應(yīng)相互獨(dú)立,即{},
2025-08-01 14:22
【總結(jié)】1§離散型隨機(jī)變量§隨機(jī)變量的概念§超幾何分布·二項(xiàng)分布·泊松分布?2,1)()(???ixpxXPii1.“0-1”分布(兩點(diǎn)分布)3.二項(xiàng)分布),(~pnBX)(xPnx
2025-07-17 19:19
【總結(jié)】導(dǎo)入新課(1)離散型隨機(jī)變量的分布列:復(fù)習(xí)回顧Xx1x2…xi…Pp1p2…pi…(2)離散型隨機(jī)變量分布列的性質(zhì):①pi≥0,i=1,2,…;②p1+p2+…+pi+…=1.對于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率.但在實(shí)際
2025-05-09 22:37
【總結(jié)】§4相互獨(dú)立的隨機(jī)變量一、隨機(jī)變量獨(dú)立性的定義二、隨機(jī)變量獨(dú)立性的有關(guān)結(jié)論三、小結(jié)思考題回憶若P{X≤x,Y≤y}=P{X≤x}·P{Y≤y}則{X≤x}與{Y≤y}相互獨(dú)立.F(x,y)FX(x)FY(y)若P(AB)=P(A)P(B),則稱A與B相互獨(dú)立.一、隨機(jī)變量獨(dú)立
2025-04-30 03:04
【總結(jié)】1第四章隨機(jī)變量的數(shù)字特征分布函數(shù)能夠完整地描述隨機(jī)變量的統(tǒng)計(jì)特性,但在一些實(shí)際問題中,只需知道隨機(jī)變量的某些特征,因而不需要求出它的分布函數(shù).評定某企業(yè)的經(jīng)營能力時(shí),只要知道該企業(yè)人均贏利水平;例如:研究水稻品種優(yōu)劣時(shí),我們關(guān)心的是稻穗的平均粒數(shù)及每粒的平均重
2025-04-29 05:37
【總結(jié)】??????????????????????????)(1)(11)1(1122122122212221FFFFPFFFPFFP或;得拒絕域:的置信區(qū)間后,求的統(tǒng)計(jì)量選取方差比為置信上限置信下限,即假設(shè)假設(shè).第十六講更正????屬不可能事件。很
2024-10-16 05:11
【總結(jié)】ξ可取-1,0,1(且ξ為離散型隨機(jī)變量)解:設(shè)黃球的個(gè)數(shù)為n,依題意知道綠球個(gè)數(shù)為2n,紅球個(gè)數(shù)為4n,盒中球的總數(shù)為7n。p10-1(2)并分別求這三種情況下的概率例1一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個(gè)數(shù)是綠球個(gè)數(shù)的兩倍,黃球個(gè)數(shù)是綠球的一半,現(xiàn)從該盒中隨機(jī)取出一個(gè)球,
2024-11-09 12:29
【總結(jié)】1.理解取有限個(gè)值的離散型隨機(jī)變量及其分布列的概念,了解分布列對于刻畫隨機(jī)現(xiàn)象的重要性.2.理解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡單的應(yīng)用.3.了解條件概率和兩個(gè)事件相互獨(dú)立的概念,理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解決一些簡單的實(shí)際問題.4.理解取有限個(gè)值的離散型隨機(jī)變量均值、方差的概念,能計(jì)算
2025-04-30 13:59
【總結(jié)】Chapter2(1)離散型隨機(jī)變量的概率分布,隨機(jī)變量的分布函數(shù)教學(xué)要求:1.理解隨機(jī)變量的概念;2.理解離散型隨機(jī)變量的分布律及性質(zhì);3.掌握二項(xiàng)分布、泊松分布;4.會(huì)應(yīng)用概率分布計(jì)算有關(guān)事件的概率;5.理解隨機(jī)變量分布函數(shù)的概念及性質(zhì)..隨機(jī)變量一.分布離散型隨機(jī)變量的概率二
2024-12-08 11:26