【總結(jié)】2022-2022學(xué)年度周寧十中高二年級數(shù)學(xué)考試試卷時間:90分鐘班級姓名座號得分一、選擇題(每題3分,共30分),則擲得奇數(shù)點的概率是()A.61
2025-01-08 08:00
2025-01-11 01:35
【總結(jié)】利用導(dǎo)數(shù)證明不等式的常見題型及解題技巧趣題引入已知函數(shù)設(shè),證明:分析:主要考查利用導(dǎo)數(shù)證明不等式的能力。證明:,設(shè)當(dāng)時,當(dāng)時,即在上為減函數(shù),在上為增函數(shù)∴,又∴,即設(shè)當(dāng)時,,因此在區(qū)間上為減函數(shù);因為,又∴,即故綜上可知,當(dāng)時,本題在設(shè)輔助函數(shù)時,考慮到不等式涉及的變量是區(qū)間的兩個端點,因此,設(shè)輔助
2025-03-24 12:45
【總結(jié)】導(dǎo)數(shù)題型總結(jié)(解析版)體型一:關(guān)于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系(2)端點處和頂點是最值所在其次,分析每種題型的本質(zhì),你會發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應(yīng)用數(shù)形
2024-10-27 10:44
【總結(jié)】導(dǎo)數(shù)題型歸納請同學(xué)們高度重視:首先,關(guān)于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系(2)端點處和頂點是最值所在其次,分析每種題型的本質(zhì),你會發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應(yīng)用數(shù)形結(jié)合思想”,創(chuàng)建不等關(guān)系求出取值范圍。
2025-04-17 13:06
【總結(jié)】高考導(dǎo)數(shù)壓軸題題型李遠敬整理一.求函數(shù)的單調(diào)區(qū)間,函數(shù)的單調(diào)性1.【2012新課標】21.已知函數(shù)滿足滿足;(1)求的解析式及單調(diào)區(qū)間;【解析】(1)令得:得:在上單調(diào)遞增得:的解析式為且單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為2.【2013新課標2】21.已知函數(shù)f(x)=ex-ln(x+m).(1)設(shè)x=0是f(x)的
2025-04-17 13:13
【總結(jié)】導(dǎo)數(shù)各種題型方法總結(jié)請同學(xué)們高度重視:首先,關(guān)于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系(2)端點處和頂點是最值所在其次,分析每種題型的本質(zhì),你會發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應(yīng)用數(shù)形結(jié)合思想”,創(chuàng)建不等關(guān)系求出取值范圍
2025-05-31 12:10
【總結(jié)】導(dǎo)數(shù)測試題一.選擇題(50分)1曲線y=12x2-2x在點(1,-32)處的切線的傾角為()A-1B45°C225°D135°2.函數(shù)f(x)=(x+1)(x2-x+1)的導(dǎo)數(shù)是()Ax2-x+1B(
2025-01-09 19:28
【總結(jié)】導(dǎo)數(shù)的綜合應(yīng)用★★★高考在考什么【考題回放】1.(06江西卷)對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)f¢(x)30,則必有(C)A.f(0)+f(2)2f(1)B.f(0)+f(2)£2f(1)C.f(0)+f(2)32f(1)D.f(0
2025-08-21 20:38
【總結(jié)】文科導(dǎo)數(shù)題型歸納請同學(xué)們高度重視:首先,關(guān)于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系(2)端點處和頂點是最值所在其次,分析每種題型的本質(zhì),你會發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應(yīng)用數(shù)形結(jié)合思想”,創(chuàng)建不等關(guān)系求出取值范圍。
2025-08-09 17:57
【總結(jié)】......導(dǎo)數(shù)壓軸題型歸類總結(jié)目 錄一、導(dǎo)數(shù)單調(diào)性、極值、最值的直接應(yīng)用(1)二、交點與根的分布?。?3)三、不等式證明?。?1)(一)作差證明不等式 (二)變形構(gòu)造函數(shù)證明不等式
【總結(jié)】導(dǎo)數(shù)復(fù)習(xí)知識點一、導(dǎo)數(shù)的概念導(dǎo)數(shù)。二、導(dǎo)數(shù)的幾何意義函數(shù)y=f(x)在點處的導(dǎo)數(shù),就是曲線y=(x)在點處的切線的斜率.由此,可以利用導(dǎo)數(shù)求曲線的切線方程.具體求法分兩步:(1)求出函數(shù)y=f(x)在點處的導(dǎo)數(shù),即曲線y=f(x)在點處的切線的斜率;(2)在已知切點坐標和切線斜率的條件下,求得切線方程為 三、常見函數(shù)
2025-08-09 12:00
【總結(jié)】題型三極值最值型極大值極小值⑴在包含x0的一個區(qū)間(a,b)內(nèi),函數(shù)y=f(x)在任何一點的函數(shù)值都小于x0點的函數(shù)值,稱點x0為函數(shù)y=f(x)的極大值點,其函數(shù)值f(x0)為函數(shù)的極大值;⑵在包含x0的一個區(qū)間(a,b)內(nèi),函數(shù)y=f(x)在任何一點的函數(shù)值都大于x0點的函數(shù)值,稱點x0為函數(shù)y=f(x)的極小值點,其函數(shù)值f(x0)為函數(shù)的極小值;⑶極大值
2025-07-26 14:27
【總結(jié)】《導(dǎo)數(shù)及其應(yīng)用》經(jīng)典題型總結(jié)一、知識網(wǎng)絡(luò)結(jié)構(gòu)導(dǎo)數(shù)導(dǎo)數(shù)的概念導(dǎo)數(shù)的運算導(dǎo)數(shù)的應(yīng)用導(dǎo)數(shù)的幾何意義、物理意義函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值常見函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)的運算法則矚慫潤厲釤瘞睞櫪廡賴賃軔朧。題型一求函數(shù)的導(dǎo)數(shù)及導(dǎo)數(shù)的幾何意義考點一導(dǎo)數(shù)的概念,物理意義的應(yīng)用例.()設(shè)函數(shù)在處可導(dǎo),且,求;()已知,求.考點二導(dǎo)數(shù)的幾何意
2025-03-25 00:40
【總結(jié)】(二次函數(shù)區(qū)間最值的例子)第三種:構(gòu)造函數(shù)求最值題型特征:恒成立恒成立;從而轉(zhuǎn)化為第一、二種題型例3;已知函數(shù)圖象上一點處的切線斜率為,(Ⅰ)求的值;(Ⅱ)當(dāng)時,求的值域;(Ⅲ)當(dāng)時,不等式恒成立,求實數(shù)t的取值范圍。二、題型一:已知函數(shù)在某個區(qū)間上的單調(diào)性求參數(shù)的范圍解法1:轉(zhuǎn)化為在給定區(qū)間上恒成立,回歸基礎(chǔ)題型解法2:利用子區(qū)間(即子集思
2025-04-17 13:10