【總結(jié)】我們不做宣傳,我們只做口碑!函數(shù)的周期性與對稱性◆函數(shù)的軸對稱定理1:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線對稱.推論1:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線對稱.推論2:函數(shù)滿足,則函數(shù)的圖象關(guān)于直線(y軸)對稱.◆函數(shù)的周期性定理2:函數(shù)對于定義域中的任意,都有,則是以為周期的周期函數(shù);推論1
2025-03-24 12:16
【總結(jié)】函數(shù)的對稱性一、選擇題.如果函數(shù)的圖象關(guān)于點(diǎn)A(1,2)對稱,那么 ( ?。〢.p=-2,n=4 B.p=2,n=-4C.p=-2,n=-4 D.p=2,n=4【答案】A.(山東省實(shí)驗(yàn)中學(xué)2014屆高三上學(xué)期第二次診斷性測試數(shù)學(xué)(理)試題)函數(shù)對任意的圖象關(guān)于點(diǎn)對稱,則 ( ?。〢. B. C. D.0【答案】D.(山東省桓臺第二中學(xué)2014屆
2025-06-20 03:25
【總結(jié)】課題:垂直于弦的直徑復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在直線形中學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它們的對稱軸.看一看
2024-11-23 10:46
【總結(jié)】專業(yè)資料分享函數(shù)的周期性與對稱性1、函數(shù)的周期性若a是非零常數(shù),若對于函數(shù)y=f(x)定義域內(nèi)的任一變量x點(diǎn)有下列條件之一成立,則函數(shù)y=f(x)是周期函數(shù),且2|a|是它的一個周期。①f(x+a)=f(x-a)②f(x+a)=-f(x)③f(x+a)=1/f(x)④f
2025-05-16 02:04
【總結(jié)】......函數(shù)的對稱性和奇偶性函數(shù)函數(shù)對稱性、周期性基本知識一、同一函數(shù)的周期性、對稱性問題(即函數(shù)自身)1、周期性:對于函數(shù),如果存在一個不為零的常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個值時,都有都成立,那么
2025-06-16 04:06
【總結(jié)】第四章分子對稱性Chapter4.MolecularSymmetryandIntroductiontoGroupTheory對稱性概念分子中的對稱操作與對稱元素分子點(diǎn)群分子對稱性與偶極矩、旋光性的關(guān)系分子的對稱性與偶極矩分子的對稱性與旋光性Conte
2025-05-02 12:08
【總結(jié)】函數(shù)的對稱性一、有關(guān)對稱性的常用結(jié)論1、軸對稱(1)=函數(shù)圖象關(guān)于軸對稱;(2)函數(shù)圖象關(guān)于對稱;(3)若函數(shù)定義域?yàn)?,且滿足條件,則函數(shù)的圖象關(guān)于直線對稱。2、中心對稱(1)=-函數(shù)圖象關(guān)于原點(diǎn)對稱;.(2)函數(shù)圖象關(guān)于對稱;(3)函數(shù)圖象關(guān)于成中心對稱(4)若函數(shù)定義域?yàn)?,且滿足條件(為常數(shù)),則函數(shù)的圖象關(guān)于點(diǎn)對稱。二、
2025-06-18 23:35
【總結(jié)】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2025-10-09 06:59
【總結(jié)】.圖1圖2九年級數(shù)學(xué)圓的對稱性(1)教學(xué)案學(xué)習(xí)目標(biāo):1、會利用圓的軸對稱性探究垂徑定理、證明垂徑定理;2、能利用垂徑定理進(jìn)行相關(guān)的計算和證明;3、掌握垂徑定理的推論。學(xué)習(xí)重點(diǎn):垂徑定理的證明與簡單應(yīng)用;學(xué)習(xí)難點(diǎn):垂徑定理的證明及其簡單應(yīng)用。學(xué)習(xí)過程:一、復(fù)習(xí)提問:1、什么是軸對稱
2024-12-09 03:54
【總結(jié)】?對稱性和疊加性?奇偶虛實(shí)性?尺度變換特性?時移特性和頻移特性?微分和積分特性?卷積定理?Paseval定理§一、對稱性?若已知?則?????????dejFtftj)(21)(,)(21)(???????????dejFtftj
2025-01-14 15:26
【總結(jié)】··fv0m力心證明:在有心力場作用下,質(zhì)點(diǎn)必在同一平面內(nèi)運(yùn)動。Q1Q2求均勻帶電球面球心的電場強(qiáng)度(電場強(qiáng)度是矢量)1對稱性原理(principleofsymmetry)一.基本概念二.基本操作與對稱性的分類三.對稱性原理四.對稱性與守恒定律對稱性的規(guī)律具有極大的
2025-04-29 00:14
【總結(jié)】圓的對稱性(二)白銀十中李再義教學(xué)目標(biāo):(1)理解圓的旋轉(zhuǎn)不變性,掌握圓心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實(shí)驗(yàn)、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2024-11-23 13:04
【總結(jié)】......函數(shù)的周期性與對稱性1、函數(shù)的周期性若a是非零常數(shù),若對于函數(shù)y=f(x)定義域內(nèi)的任一變量x點(diǎn)有下列條件之一成立,則函數(shù)y=f(x)是周期函數(shù),且2|a|是它的一個周期。①f(x+a)=f(x-a)②f(x+a)
2025-05-16 02:09
【總結(jié)】......函數(shù)圖象關(guān)于點(diǎn)對稱性函數(shù)是中學(xué)數(shù)學(xué)教學(xué)的主線,是中學(xué)數(shù)學(xué)的核心內(nèi)容,也是整個高中數(shù)學(xué)的基礎(chǔ)。函數(shù)的性質(zhì)是高考的重點(diǎn)與熱點(diǎn),函數(shù)的對稱性是函數(shù)的一個基本性質(zhì)之一,對稱關(guān)系不僅廣泛存在于數(shù)學(xué)問題之中,而且利用對稱性往往能更簡捷的
2025-06-18 20:37
【總結(jié)】晶體的宏觀對稱對稱的概念對稱就是物體相同部分有規(guī)律的重復(fù)。對稱性在日常生活中很常見,但對稱的概念還有更深邃和更廣泛的含義:變換中的不變性;建造大自然的密碼;審美要素。對稱的概念還在不斷被科學(xué)賦予新意。自然界中的對稱性隨處可見,對稱是自然界固有的一種屬性。下面給出具有幾何對稱性的一些例子。某個平面圖形具
2025-05-12 03:43