【總結(jié)】排列組合應(yīng)用題解法綜述計數(shù)問題中排列組合問題是最常見的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導(dǎo)致問題難易變化也較大,而且解題過程出現(xiàn)“重復(fù)”和“遺漏”的錯誤較難自檢發(fā)現(xiàn)。因而對這類問題歸納總結(jié),并把握一些常見解題模型是必要的?;驹斫M合排列排列數(shù)公式組合數(shù)
2025-08-15 22:10
【總結(jié)】引入:前面我們已經(jīng)學習和掌握了排列組合問題的求解方法,下面我們要在復(fù)習、鞏固已掌握的方法的基礎(chǔ)上,學習和討論排列、組合的綜合問題。和應(yīng)用問題。問題:解決排列組合問題一般有哪些方法?應(yīng)注意什么問題?解排列組合問題時,當問題分成互斥各類時,根據(jù)加法原理,可用分類法;當問題考慮先后次序時,根據(jù)乘法原
2025-08-07 14:47
【總結(jié)】名稱內(nèi)容分類原理分步原理定義相同點不同點兩個原理的區(qū)別與聯(lián)系:做一件事或完成一項工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類
2025-03-05 11:20
【總結(jié)】問題1把abcd平均分成兩組有_____多少種分法?結(jié)論:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以,即m!,其中m表示組數(shù)。abcdacbdadbccdbdbcadacab這兩個在分組時只能算一個mmA均分不安排工作的問題例1:12本不
2025-08-05 07:24
【總結(jié)】排列組合綜合問題教學目標通過教學,學生在進一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學會分類討論的思想.教學重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學用具投影儀.教學過程設(shè)計(一)引入師:現(xiàn)在我們大家已經(jīng)學習和掌握了一些排列問題和組
2025-03-25 02:37
【總結(jié)】解排列組合問題的常用策略名稱內(nèi)容分類原理分步原理定義相同點不同點兩個原理的區(qū)別與聯(lián)系:做一件事或完成一項工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類辦法中有mn種不同的方法,那么完
2025-01-25 20:06
【總結(jié)】完美WORD格式巧解排列組合的21種模型排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,,掌握題型和識別模式,并熟練運用,.:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種
2025-06-28 13:29
【總結(jié)】排列組合應(yīng)用題的解題策略河北徐水綜合高中張占江郵編072550@排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略。1、相鄰問題捆綁法。題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列。例1:五
2025-06-07 19:47
【總結(jié)】排列組合應(yīng)用題數(shù)學教研組盛建芳復(fù)習回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2025-08-15 23:43
【總結(jié)】1北師大版高中數(shù)學2-3第一章《計數(shù)原理》法門高中姚連省制作2一、教學目標:(1)掌握排列組合一些常見的題型及解題方法,能夠運用兩個原理及排列組合概念解決排列組合問題;(2)提高合理選用知識解決問題的能力.二、教學重點、難點:排列、組合綜合問題.三、教學方法:探析歸納,討論交流四、教學過程
2025-08-15 23:45
【總結(jié)】 第1頁共14頁 解排列組合應(yīng)用問題的十種思考方法[1] 錯誤。未找到引用源?!敖馀帕?、組合應(yīng)用問題” 的思維方法 一、優(yōu)先考慮:對有特殊元素(即被限制的元素)或特殊位 置(被限制的位置)...
2025-08-18 01:39
【總結(jié)】排列組合復(fù)習二、重點難點三、綜合練習四、復(fù)習建議一、知識結(jié)構(gòu)基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題一、知識結(jié)構(gòu)二、重點難點1.兩個基本原理
2024-11-18 00:34
【總結(jié)】解決排列組合中涂色問題的常見方法及策略與涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學思想。解決涂色問題方法技巧性強且靈活多變,故這類問題的利于培養(yǎng)學生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標①
2025-07-26 07:24
【總結(jié)】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元素的空位和兩端.,如果甲乙兩個必須不相鄰,那么不同的排法種
【總結(jié)】高考數(shù)學中涂色問題的常見解法及策略與涂色問題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學思想。解決涂色問題方法技巧性強且靈活多變,因而這類問題有利于培養(yǎng)學生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1。用5種不同的顏色給圖中