【正文】
。 m W a e P P 47 即有: ) 05 . 1 (6Pe 2 /Wap = K ? ? 對(duì)于邊裂紋有限寬板,拉伸、彎曲載荷作用下的應(yīng)力強(qiáng)度因子查表可知分別為: 拉伸: ?t=P/W; =; = W a / =x4 3 2 39 . . 12 . 1) ( x x xxx ++ =F )。 (xp? F a =K ? t 即有: W a P / 37 . 1 p = K ? 彎曲: ?b=6Pe/W2; =; = )。 (xp? F a = K? b ? W a / = x 4 3 2 . . 1 )( x x x x x + + = FK K K = ? ? + ? = W e W a P ) / 3 . 6 37 . 1 )( / ( + p 得到: 48 發(fā)生斷裂時(shí)的臨界狀態(tài)下應(yīng)有: c c K W e W a P 1 ) / 3 . 6 37 . 1 )( / ( = + p K = 代入已知數(shù)據(jù)并注意統(tǒng)一單位,得到: = MN ) / 01 . 0 3 . 6 37 . 1 ( 005 . 0 14 . 3 025 . 0 60 ) / 3 . 6 37 . 1 ( 1 + = + = W e a W K P c c p 注意 :上述結(jié)果是在線彈性假設(shè)下得到的。本題臨界狀態(tài)時(shí) : ?t=P/W=123MPa, ?b=6Pe/W2=? t(6/25), 二者疊加后也不過 ?ys的 30%,故結(jié)果是可信的。 49 低應(yīng)力斷裂:在靜強(qiáng)度足夠的情況下發(fā)生的斷裂 。 剩余強(qiáng)度 : 受裂紋影響降低后的強(qiáng)度。 工程中最常見的、危害最大的是 I (張開 )型裂紋。 用彈性力學(xué)方法可以 得到裂紋尖端附近任一點(diǎn)(r,q)處的應(yīng)力場(chǎng): ? p f q ij ij K r = 1 2 ( ) K a 1 = ? p 式中: 小結(jié) 應(yīng)力強(qiáng)度因子 K反映了裂尖應(yīng)力場(chǎng)的強(qiáng)弱; K的量綱為 [應(yīng)力 ][長(zhǎng)度 ]1/2,常用 MPa 。 m 50 裂尖的 應(yīng)力強(qiáng)度因子 K1可以更一般地寫為: K a f a W 1 = ? p ( , , . . . ) 對(duì)于承受拉伸的無限寬中心裂紋板, f=1; 對(duì)于無限寬單邊裂紋板, f=。 裂紋尺寸和形狀 作用應(yīng)力 材料斷裂韌性 K1C 斷裂三要素 或 K?K1C K f a W a = ( , ) L ? p ? K c 1 斷裂判據(jù): 抗力 作用 51 抗斷裂設(shè)計(jì)基本認(rèn)識(shí): 低溫時(shí),材料 K1c降低,注意發(fā)生低溫脆性斷裂。 裂紋尺寸 a與應(yīng)力強(qiáng)度因子 K的平方成正比,故斷裂韌性 K1c增大一倍,斷裂時(shí)的臨界裂紋尺寸將增大到四倍。 控制材料缺陷和加工、制造過程中的損傷。 當(dāng)缺陷存在時(shí),應(yīng)進(jìn)行抗斷設(shè)計(jì)計(jì)算。 K1c較高的材料,斷裂前 ac較大,便于檢查發(fā)現(xiàn)裂紋。 52 有待討論的二個(gè)問題: 1. 表面裂紋的應(yīng)力強(qiáng)度因子: 多為表面裂紋 t 2W a 2c 工程中 的裂紋 加工缺陷 疲勞萌生 表面裂紋是三維問題,其應(yīng)力強(qiáng)度因子的計(jì)算, 比平面二維問題復(fù)雜得多。 但對(duì)于斷裂分析、疲勞裂紋擴(kuò)展壽命估計(jì)有著十 分重要實(shí)際意義。將在第七章討論。 53 用彈性力學(xué)方法 得到裂紋尖端附近任一點(diǎn) (r,q)處的正應(yīng)力 ?x、 ?y和剪應(yīng)力 txy為: ? ? x y 2a dx dy r q ? y ? x t xy 2. 裂紋尖端材料的屈服 彈塑性斷裂的問題: ? ? q y a r = + 2 2 1 cos [ q q 2 3 2 sin sin ] t ? q q q xy a r = 2 2 2 3 2 sin cos cos ? ? q x a r = 2 2 1 cos [ q q 2 3 2 sin sin ] (51) 在裂紋線上, q =0, ,裂尖材料屈服。 ? ? y a r = 2 rp a x ? y ?ys A B D o H K 54 As is wellknown, materials develop plastic strains as the yield stress is exceeded in the region near the crack tip. The amount of plastic deformation is restricted by the surrounding material, which remains elastic. The size of this plastic zone is dependent on the stress conditions of the body. 眾所周知,在裂紋尖端附近區(qū)域超過屈服應(yīng)力后會(huì)發(fā)生塑性應(yīng)變。塑性變形的程度受到周圍彈性材料的約束。塑性區(qū)尺寸取決于物體的應(yīng)力條件。 55 Plane stress condition: In a thin body, the stress through the thickness (?z) cannot vary appreciable due to the thin section. Because there can be no stress normal to a free surface, ?z=0 through the section and a biaxial state of stress result. x z y 在薄截面物體中,穿過厚度的應(yīng)力?z不可能有什么變化。因?yàn)樽杂杀砻娌豢赡苡蟹ㄏ驊?yīng)力,故整個(gè)截面有 ?z=0,成為雙軸應(yīng)力狀態(tài)。 56 In a thick body, the material is constrained in the z direction due to the thickness of the cross section and ez=0, resulting in a plane strain condition. Due to Poisson’s effect, a stress, ?z , is developed in the z direction. Maximum constraint conditions exist in the plane strain condition, and consequently the plastic zone size is smaller than that developed under plane stress conditions. x z y 在厚物體中,因?yàn)榻孛婧?,材料?z方向受到約束且 ez=0,給出平面應(yīng)變狀態(tài)。由于泊松效應(yīng),在 z方向發(fā)生應(yīng)力 ?z。平面應(yīng)變下約束最大,故其塑性區(qū)尺寸小于平面應(yīng)力情況。 57 習(xí)題: 53, 54 本章完 再見! 返回主目錄