【正文】
well approach : xyy? xx? yy?x xu)2()()1(??????????????????????XCyXCKKCXuBXAyyKuBXAXCXyBuAXX???))((:)2()1(。XXKCAXKCKCXXAAXXXCCBBAAw h e n???????????????eKCAethe nXXena m e)(,?????Select the matrix K to make the solution of this equation on error be convergent (收斂的 ), then, XXore ?? ,0))((:XXKCAXXO bs e r v e r???? ??The gain matrix K is written as: ?????????????nkkkK?21The closedloop poles of this model (observer) can be selected by selecting the gain matrix K , so that the state variables will be same as in the end. Hence, we can use as the state variables in the state variable feedback system. XXX? The closedloop system with observer B C A sI+ + u x y B C A sI+ + x? y?K G r + + 狀態(tài)觀測(cè)器 狀態(tài)反饋 The sufficient and necessary condition of constructing a state variable observer The state variables of system are all observable. Observability criterion: A system {A, C} is state – observable if and only if nCACACACr a n kn?????????????????? 12?參見 《 線性控制系統(tǒng)工程 》 539頁(yè) POLE PLACEMENT VIA AKERMANN’S FORMULA MATLAB直接用于系統(tǒng)極點(diǎn)配置計(jì)算的函數(shù)有 acker和 place A,B為系統(tǒng)矩陣 K=acker(A,B,P) P為期望極點(diǎn)向量 K反饋增益向量 ?K=place(A,B,P) ? 狀態(tài)觀測(cè)器設(shè)計(jì)一般原理歸結(jié)為使用極點(diǎn)配置法求觀測(cè)器的增益矩陣 G A,C為系統(tǒng)矩陣 G=acker(A’,C’,P) P為觀測(cè)器的期望極點(diǎn)向量 G為觀測(cè)器增益向量 ?K=place(A’,C’,P) 觀測(cè)器設(shè)計(jì)和帶觀測(cè)器的狀態(tài)反饋系統(tǒng) ? ? ? 利用階躍響應(yīng)和狀態(tài)響應(yīng)來(lái)進(jìn)行檢驗(yàn)狀態(tài)估計(jì)值是否與系統(tǒng)狀態(tài)實(shí)際值吻合