freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

hd600多向混合機(jī)的設(shè)計(jì)_畢業(yè)設(shè)計(jì)-資料下載頁(yè)

2025-08-23 16:59本頁(yè)面

【導(dǎo)讀】現(xiàn)回轉(zhuǎn)、平移、翻轉(zhuǎn)等復(fù)雜運(yùn)動(dòng),是一種高效的混合設(shè)備。在該設(shè)計(jì)任務(wù)書中,我綜合。對(duì)空間6桿機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)分析,最后繪制出該混合機(jī)的裝配圖和各主要零件的零件圖。組分可有懸殊的重量比,混合率達(dá)%以上,是目前各種混合機(jī)中的一種較理想產(chǎn)品。筒體裝料率大,最高可達(dá)90%,效率高,混合時(shí)間短。處為圓弧過(guò)渡,經(jīng)過(guò)精密拋光處理。多向運(yùn)動(dòng)混合機(jī)的優(yōu)勢(shì)在于其特殊的工作原理,以。及桶體結(jié)構(gòu)的設(shè)計(jì)無(wú)死角,不污染物料,出料方便,清洗容易,操作簡(jiǎn)單等優(yōu)點(diǎn)。器內(nèi)作旋轉(zhuǎn)、翻轉(zhuǎn)、湍動(dòng)和剪切作用,使物料在混合時(shí)不產(chǎn)生積聚現(xiàn)象,對(duì)不同比重,鐘即可混合均勻。既提高了工作效率,又達(dá)到了極高的均勻度,混合均勻性達(dá)到%. 因其最大裝載系數(shù)可達(dá)這一特點(diǎn),大大縮短了混合。物料的時(shí)間,提高了混合物料效率。

  

【正文】 輪接觸計(jì)算的不精確性是一個(gè)比載荷分布更大的影響因素。 采用有限元法的精確建模 斜面體齒輪的應(yīng)力也能利用 有限元法計(jì)算。圖 14 是齒輪橫斷面建模的實(shí)例。圖 15給出了使用 PERMAS軟件由計(jì)算機(jī)生成的主動(dòng)齒輪在嚙合位置的輪齒嚙合區(qū)模型和應(yīng)力分布計(jì)算值 [7]??蓪?duì)多個(gè)嚙 35 合位置進(jìn)行計(jì)算 ,并能求出齒輪旋轉(zhuǎn)產(chǎn)生的傳動(dòng)誤差。 承載能力和噪聲試驗(yàn) 在交叉軸背靠背試驗(yàn)臺(tái)上對(duì) AWD 變速器進(jìn)行試驗(yàn)以測(cè)量其承載能力 ,圖 16。試驗(yàn)齒輪采用不同的修正 ,以確定它們對(duì)承載能力的影響。承載能力的試驗(yàn)與有限元計(jì)算結(jié)果相當(dāng)吻合。值得注意的是 ,由于大端硬度提高使得載荷曲線圖朝大端由一個(gè)額外的移動(dòng)。這種移動(dòng)在替代的圓柱齒輪副計(jì)算中不能 被辨別。在進(jìn)行承載能力試驗(yàn)的同時(shí) ,傳動(dòng)誤差和旋轉(zhuǎn)加速度的測(cè)量在通用噪聲試驗(yàn)臺(tái)上進(jìn)行 ,圖 17。除了載荷影響外 ,這些試驗(yàn)還測(cè)量了附加軸線傾斜所引起的噪聲激勵(lì) ,關(guān)于軸線附加傾斜 ,試驗(yàn)中未發(fā)現(xiàn)有明顯的影響。 36 6 仿真制造 借助于仿真制造 ,可獲得機(jī)床設(shè)置及連續(xù)范成磨削和產(chǎn)生齒廓扭曲的運(yùn)動(dòng)。齒廓受迫扭曲現(xiàn)象可在變速器設(shè)計(jì)階段就被認(rèn)識(shí)到并與承載能力及噪聲一并進(jìn)行分析。斜面體齒輪制造仿真軟件由 ZF 公司開(kāi)發(fā) ,詳見(jiàn)[9]。 適用于斜面體齒輪的制造方法 斜面體齒輪僅可用范成法加工 ,因?yàn)辇X廓形狀沿齒寬方向有明顯的變化 。盡管是錐角非常小的斜面體齒輪 ,必須承認(rèn)在修整處理中仍然會(huì)出現(xiàn)齒廓角度偏差。滾刀最方便用于預(yù)切削。理論上也可采用刨削 ,但是 ,所需的運(yùn)動(dòng)在現(xiàn)有機(jī)床上很難實(shí)現(xiàn)。內(nèi)齒圓錐齒輪僅能用類似小齒輪的刀具精確制造 ,如果刀具軸線和工具軸線平行并且錐角是通過(guò)改變中心距生成的。如果內(nèi)齒輪利用軸線傾斜的小齒輪刀具如同加工差速器錐齒輪那樣來(lái)制造的話 ,將導(dǎo)致齒溝凸起和無(wú)修正運(yùn)動(dòng)的齒廓扭曲。對(duì)于小錐角而言這些偏差足夠小 ,可以被忽略。對(duì)于終加工 ,范成法螺旋磨削是一個(gè)最佳選擇。如果工件或機(jī)床夾具能被另外傾斜 ,也可采用部分范成法。如果齒輪錐 角處于機(jī)床控制范圍內(nèi) ,拓?fù)淠ハ鞴に囈彩强赡艿?(例如 5軸機(jī)床 ),但是會(huì)耗費(fèi)巨大的努力。原則上 ,珩磨等方法也能被用于加工 ,但是 ,在斜面體齒輪應(yīng)用這些方法仍需大量的開(kāi)發(fā)工作。雙齒側(cè)范成法磨削工藝并利用中心距弧形減少方法可實(shí)現(xiàn)齒溝凸起的目標(biāo)。該方法所得到的齒廓扭曲與造成嚙合間隙的齒廓扭曲相反。因此該方法可在很大程度上補(bǔ)償齒廓扭曲并可承受比圓柱齒輪更大的載荷。 工件表面形狀 以下的關(guān)于工件描述被應(yīng)用在仿真中 : 174。 原始齒輪 (留有磨削所需的余量 ) 37 174。理想齒輪 (來(lái)自齒輪數(shù)據(jù) ,無(wú)齒側(cè)修形 ) 174。完成的齒輪 (具有制造偏差和齒 側(cè)修形 ) 參考文獻(xiàn): 1. J. A. MacBain, J. J. Conover, and A. D. Brooker, “Full vehicle simulation for series hybrid vehicles,” presented at the SAE Tech. Paper, Future Transportation Technology Conf., Costa Mesa, CA, Jun. 2020, Paper 2020012301. 2. X. He and I. Hodgson,“Hybrid electric vehicle simulation and evaluation for UTHEV,”prmented at the SAE Tech. Paper Series, Future Transpotation Technology Conf., Costa Mesa, CA, Aug. 2020, Paper 2020013105. 3. K. E. Bailey and B. K. Powell,“A hybrid electric vehicle powertrai n dynamic model,”inProc. Amer. Control Conf., Jun. 21 23, 1995, vol. 3, pp. 16771682. 4. B. K. Powell, K. E. Bailey, and S. R. Cikanek,“Dynamic modeling and control of hybrid electrie vehicle powertrain system,”IEEE Control Syst. Mag., vol, 18, no. 5. pp. 1733, Oct. 1998. 5. K. L. Butler, M. Ehsani, and P. Kamath,“A Matlabbared modeling and simulation package for electric and hybrid electric vehicle design,”IEEE Trans. ., vol. 48, no. 6, pp. 17701778, Nov. 1999. 6. K. B. Wipke, M. R. Cuddy, and S. D. Burch,“ADVISOR : A user friendly advanced powertrain simulation using a bined backward/forward approach,” IEEE Trans. Veh. Technol., vol. 48. no. 6, , Nov. 1999. 7. T. Markel and K. Wipke,“Modeling grid connected hybrid electric vehicles using ADVISOR,” Annu. Battery Conf. Appl. and Adv.,Jan. 9 . pp. 2329. 8. S. M. Lukic and A. Emadi,“Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles,”IEEE Trans. ., vol. 53, no. 2, pp. 385389, Mar. 2020. 9. A. Emadi and S. Onoda,“PSIM based modeling of automotive power systems: Conventional, electric, and hybrid electric vehicles,”IEEE Trans. Veh. Technol.,vol. 53, no. 2, pp. 390400, Mar. 2020. 10. J. M. Tyrus, R. M. Long, M. Kramskaya, Y. Fertman, and A. Emadi,“Hybrid electric sport utility vehicles,”IEEE Trans. Veh. Technol., vol. 53, no. 5,pp. 1607 1622, Sep. 2020. 38 附件 2:外文原文 [ABSTRACT] Conical involute gears (beveloids) are used in transmissions with intersecting or skew axes and for backlashfree transmissions with parallel axes. Conical gears are spur or helical gears with variable addendum modification (tooth thickness) across the face width. The geometry of such gears is generally known, but applications in power transmissions are more or less exceptional. ZF has implemented beveloid gear sets in various applications: 4WD gear units for passenger cars, marine transmissions (mostly used in yachts), gear boxes for robotics, and industrial drives. The module of these beveloids varies between mm and 8 mm in size, and the crossed axes angle varies between 0176。and 25176。. These boundary conditions require a deep understanding of the design, manufacturing, and quality assurance of beveloid gears. Flank modifications, which are necessary for achieving a high load capacity and a low noise emission in the conical gears, can be produced with the continuous generation grinding process. In order to reduce the manufacturing costs, the machine settings as well as the flank deviations caused by the grinding process can be calculated in the design phase using a manufacturing simulation. This presentation gives an overview of the development of conical gears for power transmissions: Basic geometry, design of macro and micro geometry, simulation, manufacturing, gear measurement, and testing. 1 Introduction In transmissions with shafts that are not arranged parallel to the axis, torque transmission is possible by means of various designs such as bevel or crown gears , universal 39 shafts , or conical involute gears (beveloids). The use of conical involute gears is particularly ideal for small shaft angles (less than 15176。), as they offer benefits with regard to ease of production, design features, and overall input. Conical involute gears can be used in transmissions with intersecting or skew axes or in transmissions with parallel axes for backlashfree operation. Due to the fact that selection of the cone angle does not depend on the crossed axes angle, pairing is also possible with cylindrical gears. As beveloids can be produced as external and internal gears, a whole matrix of pairing options results and the designer is provided with a high degree of flexibility。 Table 1. Conical gears are spur or helical gears with variable addendum correction (tooth thickness) across the face width. They can mesh with all gears made with a tool with the same basic rack. The geometry of beveloids is generally known, but they have so far rarely been used in power tran
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1