【導(dǎo)讀】解析幾何是高中數(shù)學(xué)的重要內(nèi)容之一,也是銜接初等數(shù)學(xué)和高等數(shù)學(xué)的紐帶。而圓錐曲線是解析幾。何的重要內(nèi)容,因而成為高考考查的重點(diǎn)。研究圓錐曲線,無外乎抓住其方程和曲線兩大特征。程形式具有代數(shù)的特性,而它的圖像具有典型的幾何特性,因此,它是代數(shù)與幾何的完美結(jié)合。段所學(xué)習(xí)和研究的圓錐曲線主要包括三類:橢圓、雙曲線和拋物線。圓錐曲線問題的基本特點(diǎn)是解題思。能力,數(shù)形結(jié)合能力及綜合運(yùn)用各種數(shù)學(xué)知識(shí)和方法的能力要求較高?;就緩脚c方法,并在克服困難的過程中,增強(qiáng)解決復(fù)雜問題的信心,提高運(yùn)算能力.數(shù)法是重要方法,二是通過方程研究圓錐曲線的性質(zhì),往往通過數(shù)形結(jié)合來體現(xiàn),應(yīng)引起重視.已知橢圓以坐標(biāo)軸為對稱軸,且長軸長是短軸長的3倍,點(diǎn)P(3,0)在該橢圓上,求橢圓的方程。yx長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于。kyx表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是(0,1)。yx的最大距離是10