【總結(jié)】本文格式為Word版,下載可任意編輯 2022年公務(wù)員行測考試排列組合題指導(dǎo) 眾所周知,在各類公職類考試中,很多人對于數(shù)量關(guān)系部分都是保持放棄的態(tài)度,主要是因為題目相對較難,覺得性價比相對較低,而...
2025-04-15 00:16
【總結(jié)】1衡水市職教中心數(shù)學(xué)組韓會仿一、教學(xué)目標(biāo):(1)掌握排列組合一些常見的題型及解題方法,能夠運用兩個原理及排列組合概念解決排列組合問題;(2)提高合理選用知識解決問題的能力.二、教學(xué)重點、難點:排列、組合綜合問題.三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程完成一件事,有n類辦法,在第
2025-08-05 00:31
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會推以下恒等式(1);(2);(3);(4)
2025-08-05 07:38
【總結(jié)】排列組合專題訓(xùn)練1.(2014?四川)六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點:排列、組合及簡單計數(shù)問題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27
【總結(jié)】排列與組合中的組合1.選擇題:(1)3名醫(yī)生和6名護士被分配到3所學(xué)校為學(xué)生體檢,每校分配1名醫(yī)生和2名護士,不同的分配方法共有()A.90種B.180種C.270種D.540種(2)若等于則組合數(shù)mnCmn,?()A.!nP
2024-11-12 05:25
【總結(jié)】高二數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計章節(jié)標(biāo)題選修2-3排列組合專題計劃學(xué)時1學(xué)案作者楊得生學(xué)案審核張愛敏高考目標(biāo)掌握排列、組合問題的解題策略三維目標(biāo)一、知識與技能。?;能運用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力??.二、過程與方法通過問題的探究,體會知識的類比遷移。以
2025-08-05 06:55
【總結(jié)】數(shù)學(xué)運算-排列組合題加法原理和乘法原理(2021A)47.林輝在自助餐店就餐,他準備挑選三種肉類中的一種肉類,四種蔬菜中的二種不同蔬菜,以及四種點心中的一種點心。若不考慮食物的挑選次序,則他可以有多少不同選擇方法?()?A.4B.24C.72
2024-10-16 15:34
【總結(jié)】.公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】排列組合綜合問題教學(xué)目標(biāo)通過教學(xué),學(xué)生在進一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學(xué)會分類討論的思想.教學(xué)重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學(xué)用具投影儀.教學(xué)過程設(shè)計(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問題和組
2025-03-25 02:37
【總結(jié)】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【總結(jié)】排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學(xué)生參加爭奪數(shù)學(xué)、
2025-08-04 18:28
【總結(jié)】排列、組合問題分類解析一、解決排列、組合問題常用方法:兩個原理、優(yōu)限法、排除法、捆綁法(視一法)、插空法、隔板法、等可能法、固定模型、樹圖法等,但最基礎(chǔ)的是“兩個原理”.二、排列、組合問題大體分以下幾個類型類型一:排隊問題例1:7人站成一排,求滿足下列條件的不同站法:(1)甲不站排頭,乙不站排尾____________________(2)甲、乙兩人不站兩端_____
【總結(jié)】排列組合復(fù)習(xí)課教學(xué)設(shè)計------龍巖二中郭小峰排列組合復(fù)習(xí)課一.教學(xué)內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問題,需要考慮順序的是排列問題,排列是在組合的基礎(chǔ)上對入選的元素進行排隊,因此,分析解決排列組合問題的基本思維是“先組,后排”.,要注意四點:(1)
2025-05-01 04:21
【總結(jié)】排列組合復(fù)習(xí)學(xué)案1重復(fù)排列“求冪運算”重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù)。把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題。例18名同學(xué)爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【總結(jié)】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36