freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)壓軸題專題復(fù)習(xí)—平行四邊形的綜合含答案解析-資料下載頁

2025-04-01 22:02本頁面
  

【正文】 致圖形,并判斷上述(1)中的結(jié)論是否仍然成立(只需寫出結(jié)論,不需要證明);(3)在點P的運動過程中,△PEC能否為等腰三角形?如果能,試求出AP的長,如果不能,試說明理由.【答案】(1)①證明見解析;②點PP在運動過程中,PF的長度不變,值為;(2)畫圖見解析,成立 ;(3)能,1.【解析】分析:(1)①過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.要證PB=PE,只需證到△PGB≌△PHE即可;②連接BD,如圖2.易證△BOP≌△PFE,則有BO=PF,只需求出BO的長即可.(2)根據(jù)條件即可畫出符合要求的圖形,同理可得(1)中的結(jié)論仍然成立.(3)可分點E在線段DC上和點E在線段DC的延長線上兩種情況討論,通過計算就可求出符合要求的AP的長.詳解:(1)①證明:過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.∵四邊形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45176。.∴PG=PH,∠GPH=∠PGB=∠PHE=90176。.∵PE⊥PB即∠BPE=90176。,∴∠BPG=90176。﹣∠GPE=∠EPH.在△PGB和△PHE中,∴△PGB≌△PHE(ASA),∴PB=PE.②連接BD,如圖2.∵四邊形ABCD是正方形,∴∠BOP=90176。.∵PE⊥PB即∠BPE=90176。,∴∠PBO=90176。﹣∠BPO=∠EPF.∵EF⊥PC即∠PFE=90176。,∴∠BOP=∠PFE.在△BOP和△PFE中, ∴△BOP≌△PFE(AAS),∴BO=PF.∵四邊形ABCD是正方形,∴OB=OC,∠BOC=90176。,∴BC=OB.∵BC=1,∴OB=,∴PF=.∴點PP在運動過程中,PF的長度不變,值為.(2)當點E落在線段DC的延長線上時,符合要求的圖形如圖3所示.同理可得:PB=PE,PF=.(3)①若點E在線段DC上,如圖1.∵∠BPE=∠BCE=90176。,∴∠PBC+∠PEC=180176。.∵∠PBC<90176。,∴∠PEC>90176。.若△PEC為等腰三角形,則EP=EC.∴∠EPC=∠ECP=45176。,∴∠PEC=90176。,與∠PEC>90176。矛盾,∴當點E在線段DC上時,△PEC不可能是等腰三角形.②若點E在線段DC的延長線上,如圖4.若△PEC是等腰三角形,∵∠PCE=135176。,∴CP=CE,∴∠CPE=∠CEP=176。.∴∠APB=180176。﹣90176。﹣176。=176。.∵∠PRC=90176。+∠PBR=90176。+∠CER,∴∠PBR=∠CER=176。,∴∠ABP=176。,∴∠ABP=∠APB.∴AP=AB=1.∴AP的長為1.點睛:本題主要考查了正方形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)、勾股定理、四邊形的內(nèi)角和定理、三角形的內(nèi)角和定理及外角性質(zhì)等知識,有一定的綜合性,而通過添加輔助線證明三角形全等是解決本題的關(guān)鍵.14.如圖,點E是正方形ABCD的邊AB上一點,連結(jié)CE,過頂點C作CF⊥CE,交AD延長線于F.求證:BE=DF.【答案】證明見解析.【解析】分析:根據(jù)正方形的性質(zhì),證出BC=CD,∠B=∠CDF,∠BCD=90176。,再由垂直的性質(zhì)得到∠BCE=∠DCF,然后根據(jù)“ASA”證明△BCE≌△BCE即可得到BE=DF詳解:證明:∵CF⊥CE,∴∠ECF=90176。,又∵∠BCG=90176。,∴∠BCE+∠ECD =∠DCF+∠ECD∴∠BCE=∠DCF,在△BCE與△DCF中,∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,∴△BCE≌△BCE(ASA),∴BE=DF.點睛:本題考查的是正方形的性質(zhì),熟知正方形的性質(zhì)及全等三角形的判定與性質(zhì)是解答此題的關(guān)鍵.15.數(shù)學(xué)活動課上,老師給出如下問題:如圖,將等腰直角三角形紙片沿斜邊上的高AC剪開,得到等腰直角三角形△ABC與△EFD,將△EFD的直角頂點在直線BC上平移,在平移的過程中,直線AC與直線DE交于點Q,讓同學(xué)們探究線段BQ與AD的數(shù)量關(guān)系和位置關(guān)系.請你閱讀下面交流信息,解決所提出的問題.展示交流:小敏:滿足條件的圖形如圖甲所示圖形,延長BQ與AD交于點H.我們可以證明△BCQ≌△ACD,從而易得BQ=AD,BQ⊥AD.小慧:根據(jù)圖甲,當點F在線段BC上時,我們可以驗證小慧的說法是正確的.但當點F在線段CB的延長線上(如圖乙)或線段CB的反向延長線上(如圖丙)時,我對小慧說法的正確性表示懷疑.(1)請你幫助小慧進行分析,小敏的結(jié)論在圖乙、圖丙中是否成立?請說明理由.(選擇圖乙或圖丙的一種情況說明即可).(2)小慧思考問題的方式中,蘊含的數(shù)學(xué)思想是 .拓展延伸:根據(jù)你上面選擇的圖形,分別取AB、BD、DQ、AQ的中點M、N、P、T.則四邊形MNPT是什么樣的特殊四邊形?請說明理由.【答案】成立;分類討論思想;正方形.【解析】試題分析:利用等腰直角三角形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)得出BQ=AD,BQ⊥AD;利用已知條件分類得出,體現(xiàn)數(shù)學(xué)中的分類討論思想,拓展延伸:利用三角形中位線定理結(jié)合正方形的判定方法,首先得出四邊形MNPT是平行四邊形進而得出它是菱形,再求出一個內(nèi)角是90176。,即可得出答案.試題解析:(1)、成立,理由:如圖乙:由題意可得:∠FDE=∠QDC=∠ABC=∠BAC=45176。, 則DC=QC,AC=BC,在△ADC和△BQC中 ∵, ∴△ADC≌△BQC(SAS), ∴AD=BQ,∠DAC=∠QBC,延長AD交BQ于點F, 則∠ADC=∠BDF, ∴∠BFD=∠ACD=90176。, ∴AD⊥BQ;(2)、小慧思考問題的方式中,蘊含的數(shù)學(xué)思想是:分類討論思想;拓展延伸:四邊形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中點M、N、P、T, ∴MNAD,TPAD, ∴MNTP,∴四邊形MNPT是平行四邊形, ∵NPBQ,BQ=AD, ∴NP=MN, ∴平行四邊形MNPT是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD, ∴∠MNP=90176。, ∴四邊形MNPT是正方形.考點: 幾何變換綜合題
點擊復(fù)制文檔內(nèi)容
職業(yè)教育相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1