freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)壓軸題專題復(fù)習(xí)——二次函數(shù)的綜合含詳細(xì)答案-資料下載頁

2025-04-01 22:02本頁面
  

【正文】 ,即=∴PE=AP=t.PB=8t.∴點E的坐標(biāo)為(4+t,8t).∴點G的縱坐標(biāo)為:(4+t)2+4(4+t)=t2+8.∴EG=t2+8(8t)=t2+t.∵<0,∴當(dāng)t=4時,線段EG最長為2.②共有三個時刻:t1=, t2=,t3=.【解析】(1)根據(jù)題意即可得到點A的坐標(biāo),再由A、C兩點坐標(biāo)根據(jù)待定系數(shù)法即可求得拋物線的解析式;(2)①在Rt△APE和Rt△ABC中,由tan∠PAE,即可表示出點E的坐標(biāo),從而得到點G的坐標(biāo),EG的長等于點G的縱坐標(biāo)減去點E的縱坐標(biāo),得到一個函數(shù)關(guān)系式,根據(jù)函數(shù)關(guān)系式的特征即可求得結(jié)果;②考慮腰和底,分情況討論.13.如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標(biāo)為2,連結(jié)AM、BM.(1)求拋物線的函數(shù)關(guān)系式;(2)判斷△ABM的形狀,并說明理由;(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當(dāng)m滿足什么條件時,平移后的拋物線總有不動點.【答案】(1)拋物線解析式為y=x2﹣1;(2)△ABM為直角三角形.理由見解析;(3)當(dāng)m≤時,平移后的拋物線總有不動點.【解析】試題分析:(1)分別寫出A、B的坐標(biāo),利用待定系數(shù)法求出拋物線的解析式即可;根據(jù)OA=OM=1,AC=BC=3,分別得到∠MAC=45176。,∠BAC=45176。,得到∠BAM=90176。,進而得到△ABM是直角三角形;(3)根據(jù)拋物線的平以后的頂點設(shè)其解析式為,∵拋物線的不動點是拋物線與直線的交點,∴,方程總有實數(shù)根,則≥0,得到m的取值范圍即可試題解析:解:(1)∵點A是直線與軸的交點,∴A點為(1,0)∵點B在直線上,且橫坐標(biāo)為2,∴B點為(2,3)∵過點A、B的拋物線的頂點M在軸上,故設(shè)其解析式為:∴,解得:∴拋物線的解析式為.(2)△ABM是直角三角形,且∠BAM=90176。.理由如下:作BC⊥軸于點C,∵A(1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45176。;點M是拋物線的頂點,∴M點為(0,1)∴OA=OM=1,∵∠AOM=90176。∴∠MAC=45176。;∴∠BAM=∠BAC+∠MAC=90176?!唷鰽BM是直角三角形.(3)將拋物線的頂點平移至點(,),則其解析式為.∵拋物線的不動點是拋物線與直線的交點,∴化簡得:∴==當(dāng)時,方程總有實數(shù)根,即平移后的拋物線總有不動點∴.考點:二次函數(shù)的綜合應(yīng)用(待定系數(shù)法;直角三角形的判定;一元二次方程根的判別式)14.復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)(k是實數(shù)).教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.學(xué)生思考后,又補充一些結(jié)論,并從中選擇如下四條:①存在函數(shù),其圖像經(jīng)過(1,0)點;②函數(shù)圖像與坐標(biāo)軸總有三個不同的交點;③當(dāng)時,不是y隨x的增大而增大就是y隨x的增大而減?。虎苋艉瘮?shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù);教師:請你分別判斷四條結(jié)論的真假,并給出理由,最后簡單寫出解決問題時所用的數(shù)學(xué)方法.【答案】①真,②假,③假,④真,理由和所用的數(shù)學(xué)方法見解析.【解析】試題分析:根據(jù)方程思想,特殊與一般思想,反證思想,分類思想對各結(jié)論進行判斷.試題解析:①真,②假,③假,④:①將(1,0)代入,得,解得.∴存在函數(shù),其圖像經(jīng)過(1,0)點.∴結(jié)論①為真.②舉反例如,當(dāng)時,函數(shù)的圖象與坐標(biāo)軸只有兩個不同的交點.∴結(jié)論②為假.③∵當(dāng)時,二次函數(shù)(k是實數(shù))的對稱軸為,∴可舉反例如,當(dāng)時,二次函數(shù)為,當(dāng)時,y隨x的增大而減??;當(dāng)時,y隨x的增大而增大.∴結(jié)論③為假.④∵當(dāng)時,二次函數(shù)的最值為,∴當(dāng)時,有最小值,最小值為負(fù);當(dāng)時,有最大值,最大值為正.∴結(jié)論④為真.解決問題時所用的數(shù)學(xué)方法有方程思想,特殊與一般思想,反證思想,分類思想考點:;;、特殊元素法、反證思想和分類思想的應(yīng)用.15.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過A,C兩點,連接BC.(1)求直線l的解析式;(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點E,與直線l交于點D,連接OD.當(dāng)OD⊥AC時,求線段DE的長;(3)取點G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點P的坐標(biāo);若不存在,請說明理由.【答案】(1)y=;(2)DE=;(3)存在點P(,),使∠BAP=∠BCO﹣∠BAG,理由見解析.【解析】【分析】(1)根據(jù)題目中的函數(shù)解析式可以求得點A和點C的坐標(biāo),從而可以求得直線l的函數(shù)解析式;(2)根據(jù)題意作出合適的輔助線,利用三角形相似和勾股定理可以解答本題;(3)根據(jù)題意畫出相應(yīng)的圖形,然后根據(jù)銳角三角函數(shù)可以求得∠OAC=∠OCB,然后根據(jù)題目中的條件和圖形,利用銳角三角函數(shù)和勾股定理即可解答本題.【詳解】(1)∵拋物線y=x2+x2,∴當(dāng)y=0時,得x1=1,x2=4,當(dāng)x=0時,y=2,∵拋物線y=x2+x2與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,∴點A的坐標(biāo)為(4,0),點B(1,0),點C(0,2),∵直線l經(jīng)過A,C兩點,設(shè)直線l的函數(shù)解析式為y=kx+b,得,即直線l的函數(shù)解析式為y=?x?2; (2)直線ED與x軸交于點F,如圖1所示,由(1)可得,AO=4,OC=2,∠AOC=90176。,∴AC=2,∴OD=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD∽△ACO,∴,即,得AD=,∵EF⊥x軸,∠ADC=90176。,∴EF∥OC,∴△ADF∽△ACO,∴,解得,AF=,DF=,∴OF=4=,∴m=,當(dāng)m=時,y=(?)2+()2=,∴EF=,∴DE=EFFD=?=;(3)存在點P,使∠BAP=∠BCO∠BAG, 理由:作GM⊥AC于點M,作PN⊥x軸于點N,如圖2所示,∵點A(4,0),點B(1,0),點C(0,2),∴OA=4,OB=1,OC=2,∴tan∠OAC=,tan∠OCB=,AC=2,∴∠OAC=∠OCB,∵∠BAP=∠BCO∠BAG,∠GAM=∠OAC∠BAG,∴∠BAP=∠GAM,∵點G(0,1),AC=2,OA=4,∴OG=1,GC=1,∴AG=,即,解得,GM=,∴AM==,∴tan∠GAM=,∴tan∠PAN=,設(shè)點P的坐標(biāo)為(n,n2+n2),∴AN=4+n,PN=n2+n2,∴,解得,n1=,n2=4(舍去),當(dāng)n=時,n2+n2=,∴點P的坐標(biāo)為(,),即存在點P(,),使∠BAP=∠BCO∠BAG.【點睛】本題是一道二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題意,作出合適的輔助線,找出所求問題需要的條件,利用三角形相似、銳角三角函數(shù)和二次函數(shù)的性質(zhì)解答.
點擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1