freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx-中考數(shù)學(xué)(二次函數(shù)提高練習(xí)題)壓軸題訓(xùn)練含詳細(xì)答案-資料下載頁

2025-04-03 00:12本頁面
  

【正文】 c經(jīng)過B,C兩點,與x軸另一交點為A.點P以每秒個單位長度的速度在線段BC上由點B向點C運動(點P不與點B和點C重合),設(shè)運動時間為t秒,過點P作x軸垂線交x軸于點E,交拋物線于點M.(1)求拋物線的解析式;(2)如圖①,過點P作y軸垂線交y軸于點N,連接MN交BC于點Q,當(dāng)時,求t的值;(3)如圖②,連接AM交BC于點D,當(dāng)△PDM是等腰三角形時,直接寫出t的值.【答案】(1)y=﹣x2+3x+4;(2)t的值為;(3)當(dāng)△PDM是等腰三角形時,t=1或t=﹣1.【解析】【分析】(1)求直線y=x+4與x軸交點B,與y軸交點C,用待定系數(shù)法即求得拋物線解析式.(2)根據(jù)點B、C坐標(biāo)求得∠OBC=45176。,又PE⊥x軸于點E,得到△PEB是等腰直角三角形,由t求得BE=PE=t,即可用t表示各線段,得到點M的橫坐標(biāo),進(jìn)而用m表示點M縱坐標(biāo),求得MP的長.根據(jù)MP∥CN可證,故有,把用t表示的MP、NC代入即得到關(guān)于t的方程,求解即得到t的值.(3)因為不確定等腰△PDM的底和腰,故需分3種情況討論:①若MD=MP,則∠MDP=∠MPD=45176。,故有∠DMP=90176。,不合題意;②若DM=DP,則∠DMP=∠MPD=45176。,進(jìn)而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,則∠PMD=∠PDM,由對頂角相等和兩直線平行內(nèi)錯角相等可得∠CFD=∠PMD=∠PDM=∠CDF進(jìn)而得CF=CD.用t表示M的坐標(biāo),求直線AM解析式,求得AM與y軸交點F的坐標(biāo),即能用t表示CF的長.把直線AM與直線BC解析式聯(lián)立方程組,解得x的值即為點D橫坐標(biāo).過D作y軸垂線段DG,得等腰直角△CDG,用DG即點D橫坐標(biāo),進(jìn)而可用t表示CD的長.把含t的式子代入CF=CD,解方程即得到t的值.【詳解】(1)直線y=﹣x+4中,當(dāng)x=0時,y=4∴C(0,4)當(dāng)y=﹣x+4=0時,解得:x=4∴B(4,0)∵拋物線y=﹣x2+bx+c經(jīng)過B,C兩點∴ 解得:∴拋物線解析式為y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90176?!郞B=OC∴∠OBC=∠OCB=45176。∵M(jìn)E⊥x軸于點E,PB=t∴∠BEP=90176?!郣t△BEP中, ∴,∴ ∵點M在拋物線上∴,∴ ,∵PN⊥y軸于點N∴∠PNO=∠NOE=∠PEO=90176?!嗨倪呅蜲NPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵M(jìn)P∥CN∴△MPQ∽△NCQ∴ ∴ 解得:(點P不與點C重合,故舍去)∴t的值為 (3)∵∠PEB=90176。,BE=PE∴∠BPE=∠PBE=45176?!唷螹PD=∠BPE=45176。①若MD=MP,則∠MDP=∠MPD=45176?!唷螪MP=90176。,即DM∥x軸,與題意矛盾②若DM=DP,則∠DMP=∠MPD=45176?!摺螦EM=90176?!郃E=ME∵y=﹣x2+3x+4=0時,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,xM=4﹣t,ME=y(tǒng)M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,則∠PMD=∠PDM如圖,記AM與y軸交點為F,過點D作DG⊥y軸于點G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),設(shè)直線AM解析式為y=ax+m∴ 解得: ,∴直線AM:∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:,∴,∵∠CGD=90176。,∠DCG=45176。∴,∴ 解得: 綜上所述,當(dāng)△PDM是等腰三角形時,t=1或.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì),解二元一次方程組和一元二次方程,等腰直角三角形的性質(zhì),相似三角形的判定和性質(zhì),涉及等腰三角形的分類討論,要充分利用等腰的性質(zhì)作為列方程的依據(jù).14.如圖,拋物線y=ax2+bx經(jīng)過△OAB的三個頂點,其中點A(1,),點B(3,﹣),O為坐標(biāo)原點.(1)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式;(2)若P(4,m),Q(t,n)為該拋物線上的兩點,且n<m,求t的取值范圍;(3)若C為線段AB上的一個動點,當(dāng)點A,點B到直線OC的距離之和最大時,求∠BOC的大小及點C的坐標(biāo).【答案】(1);(2)t>4;(3)∠BOC=60176。,C(,)【解析】分析:(1)將已知點坐標(biāo)代入y=ax2+bx,求出a、b的值即可;(2)利用拋物線增減性可解問題;(3)觀察圖形,點A,點B到直線OC的距離之和小于等于AB;同時用點A(1,),點B(3,﹣)求出相關(guān)角度.詳解:(1)把點A(1,),點B(3,﹣)分別代入y=ax2+bx得 ,解得∴y=﹣(2)由(1)拋物線開口向下,對稱軸為直線x=,當(dāng)x>時,y隨x的增大而減小,∴當(dāng)t>4時,n<m.(3)如圖,設(shè)拋物線交x軸于點F,分別過點A、B作AD⊥OC于點D,BE⊥OC于點E∵AC≥AD,BC≥BE,∴AD+BE≤AC+BE=AB,∴當(dāng)OC⊥AB時,點A,點B到直線OC的距離之和最大.∵A(1,),點B(3,﹣),∴∠AOF=60176。,∠BOF=30176。,∴∠AOB=90176。,∴∠ABO=30176。.當(dāng)OC⊥AB時,∠BOC=60176。,點C坐標(biāo)為(,).點睛:本題考查綜合考查用待定系數(shù)法求二次函數(shù)解析式,拋物線的增減性.解答問題時注意線段最值問題的轉(zhuǎn)化方法.15.如圖1,拋物線與軸交于點和點,與軸交于點,拋物線的頂點為軸于點.將拋物線平移后得到頂點為且對稱軸為直的拋物線.(1)求拋物線的解析式;(2)如圖2,在直線上是否存在點,使是等腰三角形?若存在,請求出所有點的坐標(biāo):若不存在,請說明理由;(3)點為拋物線上一動點,過點作軸的平行線交拋物線于點,點關(guān)于直線的對稱點為,若以為頂點的三角形與全等,求直線的解析式.【答案】(1)拋物線的解析式為;(2)點的坐標(biāo)為,;(3)的解析式為或.【解析】分析:(1)把和代入求出a、c的值,進(jìn)而求出y1,再根據(jù)平移得出y2即可;(2)拋物線的對稱軸為,設(shè),已知,過點作軸于,分三種情況時行討論等腰三角形的底和腰,得到關(guān)于t的方程,解方程即可;(3)設(shè),則,根據(jù)對稱性得,分點在直線的左側(cè)或右側(cè)時,結(jié)合以構(gòu)成的三角形與全等求解即可.詳解:(1)由題意知,解得, 所以,拋物線y的解析式為;因為拋物線平移后得到拋物線,且頂點為,所以拋物線的解析式為,即: ;(2)拋物線的對稱軸為,設(shè),已知,過點作軸于,則 , ,當(dāng)時,即,解得或;當(dāng)時,得,無解;當(dāng)時,得,解得。綜上可知,在拋物線的對稱軸上存在點使是等腰三角形,此時點的坐標(biāo)為,.(3)設(shè),則,因為關(guān)于對稱,所以,情況一:當(dāng)點在直線的左側(cè)時, ,又因為以構(gòu)成的三角形與全等,當(dāng)且時,可求得,即點與點重合所以,設(shè)的解析式,則有解得,即的解析式為,當(dāng)且時,無解,情況二:當(dāng)點在直線右側(cè)時, ,同理可得的解析式為,綜上所述, 的解析式為或.點睛:本題主要考查了二次函數(shù)綜合題,此題涉及到待定系數(shù)法求函數(shù)解析式、等腰三角形的判定與性質(zhì)、全等三角形的性質(zhì)等知識,解答(1)問的關(guān)鍵是求出a、c的值,解答(2)、(3)問的關(guān)鍵是正確地作出圖形,進(jìn)行分類討論解答,此題有一定的難度.
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1