freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)專(zhuān)題復(fù)習(xí)分類(lèi)練習(xí)-平行四邊形綜合解答題-資料下載頁(yè)

2025-03-31 07:30本頁(yè)面
  

【正文】 方形的性質(zhì),矩形的判定和性質(zhì),勾股定理,直角三角形30度的性質(zhì)13.小明在矩形紙片上畫(huà)正三角形,他的做法是:①對(duì)折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處,再折出PB、PC,最后用筆畫(huà)出△PBC(圖1).(1)求證:圖1中的 PBC是正三角形: (2)如圖2,小明在矩形紙片HIJK上又畫(huà)了一個(gè)正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請(qǐng)求出NJ的長(zhǎng); (3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長(zhǎng)為6cm,當(dāng)另一邊的長(zhǎng)度a變化時(shí),在矩形紙片上總能畫(huà)出最大的正三角形,但位置會(huì)有所不同.請(qǐng)根據(jù)小明的發(fā)現(xiàn),畫(huà)出不同情形的示意圖(作圖工具不限,能說(shuō)明問(wèn)題即可),并直接寫(xiě)出對(duì)應(yīng)的a的取值范圍.【答案】(1)證明見(jiàn)解析;(2)①證明見(jiàn)解析;②126(3)3<a<4,a>4【解析】分析:(1)由折疊的性質(zhì)和垂直平分線(xiàn)的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點(diǎn)Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15176。,繼而可得∠NQJ=30176。,設(shè)NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進(jìn)行計(jì)算,畫(huà)出圖形即可.(1)證明:∵①對(duì)折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90176?!摺鱉NJ是等邊三角形∴MI=NI在Rt△MHI和Rt△JNI中 ∴Rt△MHI≌Rt△JNI(HL)∴HI=IJ②在線(xiàn)段IJ上取點(diǎn)Q,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90176。、∠MIN=60176。,∴∠HIM=∠JIN=15176。,由QI=QN知∠JIN=∠QNI=15176。,∴∠NQJ=30176。,設(shè)NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=126,即NJ=126(cm).(3)分三種情況:①如圖:設(shè)等邊三角形的邊長(zhǎng)為b,則0<b≤6,則tan60176。=,∴a=,∴0<b≤=;②如圖當(dāng)DF與DC重合時(shí),DF=DE=6,∴a=sin60176。DE==,當(dāng)DE與DA重合時(shí),a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30176?!郉F=∴a>點(diǎn)睛:本題是四邊形的綜合題目,考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),難度較大.14.已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個(gè)頂點(diǎn)E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.(1)如圖①,當(dāng)四邊形EFGH為正方形時(shí),求△GFC的面積;(2)如圖②,當(dāng)四邊形EFGH為菱形,且BF=a時(shí),求△GFC的面積(用a表示);(3)在(2)的條件下,△GFC的面積能否等于2?請(qǐng)說(shuō)明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)過(guò)點(diǎn)G作GM⊥BC于M.在正方形EFGH中,∠HEF=90176。,EH=EF,∴∠AEH+∠BEF=90176。.∵∠AEH+∠AHE=90176。,∴∠AHE=∠BEF.又∵∠A=∠B=90176。,∴△AHE≌△BEF.同理可證△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)過(guò)點(diǎn)G作GM⊥BC交BC的延長(zhǎng)線(xiàn)于M,連接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90176。,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面積不能等于2.說(shuō)明一:∵若S△GFC=2,則12-a=2,∴a=10.此時(shí),在△BEF中,.在△AHE中,∴AH>AD,即點(diǎn)H已經(jīng)不在邊AD上,故不可能有S△GFC=2.說(shuō)明二:△GFC的面積不能等于2.∵點(diǎn)H在AD上,∴菱形邊EH的最大值為,∴BF的最大值為.又∵函數(shù)S△GFC=12-a的值隨著a的增大而減小,∴S△GFC的最小值為.又∵,∴△GFC的面積不能等于2.15.如圖,在菱形ABCD中,AB=6,∠ABC=60176。,AH⊥BC于點(diǎn)H.動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿線(xiàn)段BC向點(diǎn)C以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F.點(diǎn)E出發(fā)后,以EF為邊向上作等邊三角形EFG,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒,△EFG和△AHC的重合部分面積為S.(1)CE= (含t的代數(shù)式表示).(2)求點(diǎn)G落在線(xiàn)段AC上時(shí)t的值.(3)當(dāng)S>0時(shí),求S與t之間的函數(shù)關(guān)系式.(4)點(diǎn)P在點(diǎn)E出發(fā)的同時(shí)從點(diǎn)A出發(fā)沿AHA以每秒2個(gè)單位長(zhǎng)度的速度作往復(fù)運(yùn)動(dòng),當(dāng)點(diǎn)E停止運(yùn)動(dòng)時(shí),點(diǎn)P隨之停止運(yùn)動(dòng),直接寫(xiě)出點(diǎn)P在△EFG內(nèi)部時(shí)t的取值范圍.【答案】(1)62t;(2)t=2;(3)當(dāng)<t≤2時(shí),S=t2+t3;當(dāng)2<t≤3時(shí),S=t2+t;(4)<t<.【解析】試題分析:(1)由菱形的性質(zhì)得出BC=AB=6得出CE=BCBE=62t即可;(2)由菱形的性質(zhì)和已知條件得出△ABC是等邊三角形,得出∠ACB=60176。,由等邊三角形的性質(zhì)和三角函數(shù)得出∠GEF=60176。,GE=EF=BE?sin60176。=t,證出∠GEC=90176。,由三角函數(shù)求出CE==t,由BE+CE=BC得出方程,解方程即可;(3)分兩種情況:①當(dāng)<t≤2時(shí),S=△EFG的面積△NFN的面積,即可得出結(jié)果;②當(dāng)2<t≤3時(shí),由①的結(jié)果容易得出結(jié)論;(4)由題意得出t=時(shí),點(diǎn)P與H重合,E與H重合,得出點(diǎn)P在△EFG內(nèi)部時(shí),t的不等式,解不等式即可.試題解析:(1)根據(jù)題意得:BE=2t,∵四邊形ABCD是菱形,∴BC=AB=6,∴CE=BCBE=62t;(2)點(diǎn)G落在線(xiàn)段AC上時(shí),如圖1所示:∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60176。,∴△ABC是等邊三角形,∴∠ACB=60176。,∵△EFG是等邊三角形,∴∠GEF=60176。,GE=EF=BE?sin60176。=t,∵EF⊥AB,∴∠BEF=90176。60176。=30176。,∴∠GEB=90176。,∴∠GEC=90176。,∴CE==t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分兩種情況:①當(dāng)<t≤2時(shí),如圖2所示:S=△EFG的面積△NFN的面積=(t)2(+2)2=t2+t3,即S=t2+t3;當(dāng)2<t≤3時(shí),如圖3所示:S=t2+t3(3t6)2,即S=t2+t;(4)∵AH=AB?sin60176。=6=3,3247。2=,3247。2=,∴t=時(shí),點(diǎn)P與H重合,E與H重合,∴點(diǎn)P在△EFG內(nèi)部時(shí),<(t)2<t(2t3)+(2t3),解得:<t<;即點(diǎn)P在△EFG內(nèi)部時(shí)t的取值范圍為:<t<.考點(diǎn):四邊形綜合題.
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1