freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)專題復(fù)習(xí)分類練習(xí)-平行四邊形綜合解答題及答案解析-資料下載頁

2025-03-31 07:28本頁面
  

【正文】 PGB≌△PHE即可;②連接BD,如圖2.易證△BOP≌△PFE,則有BO=PF,只需求出BO的長即可.(2)根據(jù)條件即可畫出符合要求的圖形,同理可得(1)中的結(jié)論仍然成立.(3)可分點E在線段DC上和點E在線段DC的延長線上兩種情況討論,通過計算就可求出符合要求的AP的長.詳解:(1)①證明:過點P作PG⊥BC于G,過點P作PH⊥DC于H,如圖1.∵四邊形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45176。.∴PG=PH,∠GPH=∠PGB=∠PHE=90176。.∵PE⊥PB即∠BPE=90176。,∴∠BPG=90176。﹣∠GPE=∠EPH.在△PGB和△PHE中,∴△PGB≌△PHE(ASA),∴PB=PE.②連接BD,如圖2.∵四邊形ABCD是正方形,∴∠BOP=90176。.∵PE⊥PB即∠BPE=90176。,∴∠PBO=90176。﹣∠BPO=∠EPF.∵EF⊥PC即∠PFE=90176。,∴∠BOP=∠PFE.在△BOP和△PFE中, ∴△BOP≌△PFE(AAS),∴BO=PF.∵四邊形ABCD是正方形,∴OB=OC,∠BOC=90176。,∴BC=OB.∵BC=1,∴OB=,∴PF=.∴點PP在運動過程中,PF的長度不變,值為.(2)當點E落在線段DC的延長線上時,符合要求的圖形如圖3所示.同理可得:PB=PE,PF=.(3)①若點E在線段DC上,如圖1.∵∠BPE=∠BCE=90176。,∴∠PBC+∠PEC=180176。.∵∠PBC<90176。,∴∠PEC>90176。.若△PEC為等腰三角形,則EP=EC.∴∠EPC=∠ECP=45176。,∴∠PEC=90176。,與∠PEC>90176。矛盾,∴當點E在線段DC上時,△PEC不可能是等腰三角形.②若點E在線段DC的延長線上,如圖4.若△PEC是等腰三角形,∵∠PCE=135176。,∴CP=CE,∴∠CPE=∠CEP=176。.∴∠APB=180176。﹣90176。﹣176。=176。.∵∠PRC=90176。+∠PBR=90176。+∠CER,∴∠PBR=∠CER=176。,∴∠ABP=176。,∴∠ABP=∠APB.∴AP=AB=1.∴AP的長為1.點睛:本題主要考查了正方形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)、勾股定理、四邊形的內(nèi)角和定理、三角形的內(nèi)角和定理及外角性質(zhì)等知識,有一定的綜合性,而通過添加輔助線證明三角形全等是解決本題的關(guān)鍵.14.如圖①,在△ABC中,AB=7,tanA=,∠B=45176。.點P從點A出發(fā),沿AB方向以每秒1個單位長度的速度向終點B運動(不與點A、B重合),過點P作PQ⊥AB.交折線ACCB于點Q,以PQ為邊向右作正方形PQMN,設(shè)點P的運動時間為t(秒),正方形PQMN與△ABC重疊部分圖形的面積為S(平方單位).(1)直接寫出正方形PQMN的邊PQ的長(用含t的代數(shù)式表示).(2)當點M落在邊BC上時,求t的值.(3)求S與t之間的函數(shù)關(guān)系式.(4)如圖②,點P運動的同時,點H從點B出發(fā),沿BAB的方向做一次往返運動,在BA上的速度為每秒2個單位長度,在AB上的速度為每秒4個單位長度,當點H停止運動時,點P也隨之停止,連結(jié)MH.設(shè)MH將正方形PQMN分成的兩部分圖形面積分別為SS2(平方單位)(0<S1<S2),直接寫出當S2≥3S1時t的取值范圍.【答案】(1) PQ=7t.(2) t=.(3) 當0<t≤時,S=.當<t≤4,.當4<t<7時,.(4)或或.【解析】試題分析:(1)分兩種情況討論:當點Q在線段AC上時,當點Q在線段BC上時.(2)根據(jù)AP+PN+NB=AB,列出關(guān)于t的方程即可解答;(3)當0<t≤時,當<t≤4,當4<t<7時;(4)或或.試題解析:(1)當點Q在線段AC上時,PQ=tanAAP=t.當點Q在線段BC上時,PQ=7t.(2)當點M落在邊BC上時,如圖③,由題意得:t+t+t=7,解得:t=.∴當點M落在邊BC上時,求t的值為.(3)當0<t≤時,如圖④,S=.當<t≤4,如圖⑤,.當4<t<7時,如圖⑥,.(4)或或..考點:四邊形綜合題.15.(本題滿分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過點B的直線折疊(折痕為BM),點A恰好落在CD邊的中點P處.(1)求矩形ABCD的邊AD的長.(2)若P為CD邊上的一個動點,折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設(shè)DP=x cm,DM=y(tǒng) cm,試求y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)①當折痕MN的端點N在AB上時,求當△PCN為等腰三角形時x的值;②當折痕MN的端點M在CD上時,設(shè)折疊后重疊部分的面積為S,試求S與x之間的函數(shù)關(guān)系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據(jù)折疊圖形的性質(zhì)和勾股定理求出AD的長度;(2)根據(jù)折疊圖形的性質(zhì)以及Rt△MPD的勾股定理求出函數(shù)關(guān)系式;(3)過點N作NQ⊥CD,根據(jù)Rt△NPQ的勾股定理進行求解;(4)根據(jù)Rt△ADM的勾股定理求出MP與x的函數(shù)關(guān)系式,然后得出函數(shù)關(guān)系式.試題解析:(1)根據(jù)折疊可得BP=AB=6cm CP=3cm 根據(jù)Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當點N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過N點作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當點M在CD上時,N在AB上,可得四邊形ANPM為菱形.設(shè)MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點:函數(shù)的性質(zhì)、勾股定理.
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1